📄 cc_method_main.m
字号:
% 主文件%clcclearclose all%---------------------------------------------------% 产生 Lorenz 时间序列sigma = 16; % Lorenz 方程参数 ab = 4; % br = 45.92; % c y = [1,0,0]; % 起始点 (1 x 3 的行向量)h = 0.01; % 积分时间步长k1 = 2000; % 前面的迭代点数k2 = 3000; % 后面的迭代点数z = LorenzData(y,h,k1+k2,sigma,r,b);z = z(k1+1:end,:);X = z(:,1);X = normalize_1(X); % 归一化到均值为 0,振幅为 1%======================================================== maxLags = 1;m_vector = 2:5;sigma = std(X);r_vector = sigma/2*[1:4];S_mean = zeros(1,maxLags);Sj = zeros(1,length(r_vector));delta_S_mean = zeros(1,maxLags);delta_S = zeros(length(m_vector),maxLags);ticfor t = 1:maxLags t temp = 0; for i = 1:length(m_vector) for j = 1:length(r_vector) m = m_vector(i); r = r_vector(j); S = ccFunction(m,X,r,t); % 文献中的标准算法 temp = temp + S; Sj(j) = S; end delta_S(i,t) = max(Sj)-min(Sj); end % 参见 <<混沌时间序列分析及应用>> P69 式(3.31) S_mean(t) = temp/(length(m_vector)*length(r_vector)); delta_S_mean = mean(delta_S);endS_cor = delta_S_mean + abs(S_mean);toc%-----------------------------------------------------------------------figure(1) subplot(311)plot(1:maxLags,S_mean);grid;subplot(312)plot(1:maxLags,delta_S_mean);grid;subplot(313)plot(1:maxLags,S_cor);grid;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -