📄 md5.cpp
字号:
*/
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))
/* ROTATE_LEFT rotates x left n bits.
*/
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
/* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
Rotation is separate from addition to prevent recomputation.
*/
#define FF(a, b, c, d, x, s, ac) { \
(a) += F ((b), (c), (d)) + (x) + (UINT4)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
}
#define GG(a, b, c, d, x, s, ac) { \
(a) += G ((b), (c), (d)) + (x) + (UINT4)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
}
#define HH(a, b, c, d, x, s, ac) { \
(a) += H ((b), (c), (d)) + (x) + (UINT4)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
}
#define II(a, b, c, d, x, s, ac) { \
(a) += I ((b), (c), (d)) + (x) + (UINT4)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
}
/* MD5 initialization. Begins an MD5 operation, writing a new context.
*/
void ap_MD5Init(AP_MD5_CTX *context)
{
context->count[0] = context->count[1] = 0;
/* Load magic initialization constants. */
context->state[0] = 0x67452301;
context->state[1] = 0xefcdab89;
context->state[2] = 0x98badcfe;
context->state[3] = 0x10325476;
}
/* MD5 block update operation. Continues an MD5 message-digest
operation, processing another message block, and updating the
context.
*/
void ap_MD5Update(AP_MD5_CTX *context, const unsigned char *input,
unsigned int inputLen)
{
unsigned int i, idx, partLen;
/* Compute number of bytes mod 64 */
idx = (unsigned int) ((context->count[0] >> 3) & 0x3F);
/* Update number of bits */
if ((context->count[0] += ((UINT4) inputLen << 3))
< ((UINT4) inputLen << 3)) {
context->count[1]++;
}
context->count[1] += (UINT4) inputLen >> 29;
partLen = 64 - idx;
/* Transform as many times as possible. */
#ifndef CHARSET_EBCDIC
if (inputLen >= partLen) {
memcpy(&context->buffer[idx], input, partLen);
MD5Transform(context->state, context->buffer);
for (i = partLen; i + 63 < inputLen; i += 64) {
MD5Transform(context->state, &input[i]);
}
idx = 0;
}
else {
i = 0;
}
/* Buffer remaining input */
memcpy(&context->buffer[idx], &input[i], inputLen - i);
#else /*CHARSET_EBCDIC*/
if (inputLen >= partLen) {
ebcdic2ascii(&context->buffer[idx], input, partLen);
MD5Transform(context->state, context->buffer);
for (i = partLen; i + 63 < inputLen; i += 64) {
unsigned char inp_tmp[64];
ebcdic2ascii(inp_tmp, &input[i], 64);
MD5Transform(context->state, inp_tmp);
}
idx = 0;
}
else {
i = 0;
}
/* Buffer remaining input */
ebcdic2ascii(&context->buffer[idx], &input[i], inputLen - i);
#endif /*CHARSET_EBCDIC*/
}
/* MD5 finalization. Ends an MD5 message-digest operation, writing the
the message digest and zeroizing the context.
*/
void ap_MD5Final(unsigned char digest[16], AP_MD5_CTX *context)
{
unsigned char bits[8];
unsigned int idx, padLen;
/* Save number of bits */
Encode(bits, context->count, 8);
#ifdef CHARSET_EBCDIC
/* XXX: @@@: In order to make this no more complex than necessary,
* this kludge converts the bits[] array using the ascii-to-ebcdic
* table, because the following ap_MD5Update() re-translates
* its input (ebcdic-to-ascii).
* Otherwise, we would have to pass a "conversion" flag to ap_MD5Update()
*/
ascii2ebcdic(bits,bits,8);
/* Since everything is converted to ascii within ap_MD5Update(),
* the initial 0x80 (PADDING[0]) must be stored as 0x20
*/
PADDING[0] = os_toebcdic[0x80];
#endif /*CHARSET_EBCDIC*/
/* Pad out to 56 mod 64. */
idx = (unsigned int) ((context->count[0] >> 3) & 0x3f);
padLen = (idx < 56) ? (56 - idx) : (120 - idx);
ap_MD5Update(context, (const unsigned char *)PADDING, padLen);
/* Append length (before padding) */
ap_MD5Update(context, (const unsigned char *)bits, 8);
/* Store state in digest */
Encode(digest, context->state, 16);
/* Zeroize sensitive information. */
memset(context, 0, sizeof(*context));
}
/* MD5 basic transformation. Transforms state based on block. */
static void MD5Transform(UINT4 state[4], const unsigned char block[64])
{
UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16];
Decode(x, block, 64);
/* Round 1 */
FF(a, b, c, d, x[0], S11, 0xd76aa478); /* 1 */
FF(d, a, b, c, x[1], S12, 0xe8c7b756); /* 2 */
FF(c, d, a, b, x[2], S13, 0x242070db); /* 3 */
FF(b, c, d, a, x[3], S14, 0xc1bdceee); /* 4 */
FF(a, b, c, d, x[4], S11, 0xf57c0faf); /* 5 */
FF(d, a, b, c, x[5], S12, 0x4787c62a); /* 6 */
FF(c, d, a, b, x[6], S13, 0xa8304613); /* 7 */
FF(b, c, d, a, x[7], S14, 0xfd469501); /* 8 */
FF(a, b, c, d, x[8], S11, 0x698098d8); /* 9 */
FF(d, a, b, c, x[9], S12, 0x8b44f7af); /* 10 */
FF(c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
FF(b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
FF(a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
FF(d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
FF(c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
FF(b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
/* Round 2 */
GG(a, b, c, d, x[1], S21, 0xf61e2562); /* 17 */
GG(d, a, b, c, x[6], S22, 0xc040b340); /* 18 */
GG(c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
GG(b, c, d, a, x[0], S24, 0xe9b6c7aa); /* 20 */
GG(a, b, c, d, x[5], S21, 0xd62f105d); /* 21 */
GG(d, a, b, c, x[10], S22, 0x2441453); /* 22 */
GG(c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
GG(b, c, d, a, x[4], S24, 0xe7d3fbc8); /* 24 */
GG(a, b, c, d, x[9], S21, 0x21e1cde6); /* 25 */
GG(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
GG(c, d, a, b, x[3], S23, 0xf4d50d87); /* 27 */
GG(b, c, d, a, x[8], S24, 0x455a14ed); /* 28 */
GG(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
GG(d, a, b, c, x[2], S22, 0xfcefa3f8); /* 30 */
GG(c, d, a, b, x[7], S23, 0x676f02d9); /* 31 */
GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
/* Round 3 */
HH(a, b, c, d, x[5], S31, 0xfffa3942); /* 33 */
HH(d, a, b, c, x[8], S32, 0x8771f681); /* 34 */
HH(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
HH(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
HH(a, b, c, d, x[1], S31, 0xa4beea44); /* 37 */
HH(d, a, b, c, x[4], S32, 0x4bdecfa9); /* 38 */
HH(c, d, a, b, x[7], S33, 0xf6bb4b60); /* 39 */
HH(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
HH(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
HH(d, a, b, c, x[0], S32, 0xeaa127fa); /* 42 */
HH(c, d, a, b, x[3], S33, 0xd4ef3085); /* 43 */
HH(b, c, d, a, x[6], S34, 0x4881d05); /* 44 */
HH(a, b, c, d, x[9], S31, 0xd9d4d039); /* 45 */
HH(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
HH(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
HH(b, c, d, a, x[2], S34, 0xc4ac5665); /* 48 */
/* Round 4 */
II(a, b, c, d, x[0], S41, 0xf4292244); /* 49 */
II(d, a, b, c, x[7], S42, 0x432aff97); /* 50 */
II(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
II(b, c, d, a, x[5], S44, 0xfc93a039); /* 52 */
II(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
II(d, a, b, c, x[3], S42, 0x8f0ccc92); /* 54 */
II(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
II(b, c, d, a, x[1], S44, 0x85845dd1); /* 56 */
II(a, b, c, d, x[8], S41, 0x6fa87e4f); /* 57 */
II(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
II(c, d, a, b, x[6], S43, 0xa3014314); /* 59 */
II(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
II(a, b, c, d, x[4], S41, 0xf7537e82); /* 61 */
II(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
II(c, d, a, b, x[2], S43, 0x2ad7d2bb); /* 63 */
II(b, c, d, a, x[9], S44, 0xeb86d391); /* 64 */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
/* Zeroize sensitive information. */
memset(x, 0, sizeof(x));
}
/* Encodes input (UINT4) into output (unsigned char). Assumes len is
a multiple of 4.
*/
static void Encode(unsigned char *output, const UINT4 *input, unsigned int len)
{
unsigned int i, j;
UINT4 k;
for (i = 0, j = 0; j < len; i++, j += 4) {
k = input[i];
output[j] = (unsigned char) (k & 0xff);
output[j + 1] = (unsigned char) ((k >> 8) & 0xff);
output[j + 2] = (unsigned char) ((k >> 16) & 0xff);
output[j + 3] = (unsigned char) ((k >> 24) & 0xff);
}
}
/* Decodes input (unsigned char) into output (UINT4). Assumes len is
* a multiple of 4.
*/
static void Decode(UINT4 *output, const unsigned char *input, unsigned int len)
{
unsigned int i, j;
for (i = 0, j = 0; j < len; i++, j += 4)
output[i] = ((UINT4) input[j]) | (((UINT4) input[j + 1]) << 8) |
(((UINT4) input[j + 2]) << 16) | (((UINT4) input[j + 3]) << 24);
}
/*
* The following MD5 password encryption code was largely borrowed from
* the FreeBSD 3.0 /usr/src/lib/libcrypt/crypt.c file, which is
* licenced as stated at the top of this file.
*/
void ap_to64(char *s, unsigned long v, int n)
{
static unsigned char itoa64[] = /* 0 ... 63 => ASCII - 64 */
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
while (--n >= 0) {
*s++ = itoa64[v&0x3f];
v >>= 6;
}
}
void ap_MD5Encode(const unsigned char *pw,
const unsigned char *salt,
char *result, unsigned int nbytes)
{
/*
* Minimum size is 8 bytes for salt, plus 1 for the trailing NUL,
* plus 4 for the '$' separators, plus the password hash itself.
* Let's leave a goodly amount of leeway.
*/
char passwd[120], *p;
const unsigned char *sp, *ep;
unsigned char final[16];
int i;
unsigned int sl;
int pl;
unsigned int pwlen;
AP_MD5_CTX ctx, ctx1;
unsigned long l;
/*
* Refine the salt first. It's possible we were given an already-hashed
* string as the salt argument, so extract the actual salt value from it
* if so. Otherwise just use the string up to the first '$' as the salt.
*/
sp = salt;
/*
* If it starts with the magic string, then skip that.
*/
if (strncmp((char *)sp, AP_MD5PW_ID, AP_MD5PW_IDLEN) == 0) {
sp += AP_MD5PW_IDLEN;
}
/*
* It stops at the first '$' or 8 chars, whichever comes first
*/
for (ep = sp; (*ep != '\0') && (*ep != '$') && (ep < (sp + 8)); ep++) {
continue;
}
/*
* Get the length of the true salt
*/
sl = ep - sp;
/*
* 'Time to make the doughnuts..'
*/
ap_MD5Init(&ctx);
pwlen = strlen((char *)pw);
/*
* The password first, since that is what is most unknown
*/
ap_MD5Update(&ctx, pw, pwlen);
/*
* Then our magic string
*/
ap_MD5Update(&ctx, (const unsigned char *) AP_MD5PW_ID, AP_MD5PW_IDLEN);
/*
* Then the raw salt
*/
ap_MD5Update(&ctx, sp, sl);
/*
* Then just as many characters of the MD5(pw, salt, pw)
*/
ap_MD5Init(&ctx1);
ap_MD5Update(&ctx1, pw, pwlen);
ap_MD5Update(&ctx1, sp, sl);
ap_MD5Update(&ctx1, pw, pwlen);
ap_MD5Final(final, &ctx1);
for(pl = pwlen; pl > 0; pl -= 16) {
ap_MD5Update(&ctx, final, (pl > 16) ? 16 : (unsigned int) pl);
}
/*
* Don't leave anything around in vm they could use.
*/
memset(final, 0, sizeof(final));
/*
* Then something really weird...
*/
for (i = pwlen; i != 0; i >>= 1) {
if (i & 1) {
ap_MD5Update(&ctx, final, 1);
}
else {
ap_MD5Update(&ctx, pw, 1);
}
}
/*
* Now make the output string. We know our limitations, so we
* can use the string routines without bounds checking.
*/
ap_cpystrn(passwd, AP_MD5PW_ID, AP_MD5PW_IDLEN + 1);
ap_cpystrn(passwd + AP_MD5PW_IDLEN, (char *)sp, sl + 1);
passwd[AP_MD5PW_IDLEN + sl] = '$';
passwd[AP_MD5PW_IDLEN + sl + 1] = '\0';
ap_MD5Final(final, &ctx);
/*
* And now, just to make sure things don't run too fast..
* On a 60 Mhz Pentium this takes 34 msec, so you would
* need 30 seconds to build a 1000 entry dictionary...
*/
for (i = 0; i < 1000; i++) {
ap_MD5Init(&ctx1);
if (i & 1) {
ap_MD5Update(&ctx1, pw, pwlen);
}
else {
ap_MD5Update(&ctx1, final, 16);
}
if (i % 3) {
ap_MD5Update(&ctx1, sp, sl);
}
if (i % 7) {
ap_MD5Update(&ctx1, pw, pwlen);
}
if (i & 1) {
ap_MD5Update(&ctx1, final, 16);
}
else {
ap_MD5Update(&ctx1, pw, pwlen);
}
ap_MD5Final(final,&ctx1);
}
p = passwd + strlen(passwd);
l = (final[ 0]<<16) | (final[ 6]<<8) | final[12]; ap_to64(p, l, 4); p += 4;
l = (final[ 1]<<16) | (final[ 7]<<8) | final[13]; ap_to64(p, l, 4); p += 4;
l = (final[ 2]<<16) | (final[ 8]<<8) | final[14]; ap_to64(p, l, 4); p += 4;
l = (final[ 3]<<16) | (final[ 9]<<8) | final[15]; ap_to64(p, l, 4); p += 4;
l = (final[ 4]<<16) | (final[10]<<8) | final[ 5]; ap_to64(p, l, 4); p += 4;
l = final[11] ; ap_to64(p, l, 2); p += 2;
*p = '\0';
/*
* Don't leave anything around in vm they could use.
*/
memset(final, 0, sizeof(final));
ap_cpystrn(result, passwd, nbytes - 1);
}
void Hash(void* pzData, int nDataLength, unsigned char *pDest, int nBittage)
{
AP_MD5_CTX my_md5;
ap_MD5Init(&my_md5);
ap_MD5Update(&my_md5, (unsigned char *)pzData, (unsigned int)nDataLength);
ap_MD5Final(pDest, &my_md5);
// for now just use 2 identical 128 bit hashes back to back
// for a 256 bit hash. This will be replaced soon.
if (nBittage == 256)
{
AP_MD5_CTX my_md52;
ap_MD5Init(&my_md52);
ap_MD5Update(&my_md52, (unsigned char *)pzData, (unsigned int)nDataLength);
ap_MD5Final(&pDest[16], &my_md52);
}
}
#endif // USE_IMPL_3
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -