⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gmd1.m

📁 这是一个适合于MIMO-OFDM系统信道的分解方式GTD和GMD的源代码
💻 M
字号:
% Matlab implementation of the "Geometric Mean Decomposition"% version of Hager, December 3, 2003% slightly modified by Yi, April 19, 2004% Copyright 2003, University of Florida, Gainesville, Florida% %A = U*S*V' is the singular value decomposition of A%           U, V unitary, S diagonal matrix with nonnegative%           diagonal entries in decreasing order%  = Q*R*P' is the geometric mean decomposition of A%           P, Q unitary, R real upper triangular with r_ii =%           geometric mean of the positive singular values of A,%           1 <= i <= p, p = number of positive singular values% All singular values smaller than tol treated as zerofunction [Q, R, P] = gmd (U, S , V, tol)if ( nargin < 4 )    tol = eps ;end[m n] = size (S) ;R = zeros (m, n) ;P = V ;Q = U ;d = diag (S) ;l = min (m, n) ;for p = l : -1 : 1    if ( d (p) >= tol )        break ;    endendif ( p < 1 )    return ;endif ( p < 2 )    R (1, 1) = d (1) ;    return ;endz = zeros (p-1, 1) ;large = 2 ;           % largest diagonal elementsmall = p ;           % smallest diagonal elementperm = [1 : p] ;      % perm (i) = location in d of i-th largest entryinvperm = [ 1 : p ] ; % maps diagonal entries to permsigma_bar = (prod (d (1:p)))^(1/p) ;for k = 1 : p-1    flag = 0 ;    if ( d (k) >= sigma_bar )            i = perm (small) ;        small = small - 1 ;        if ( d (i) >= sigma_bar )            flag = 1 ;        end    else        i = perm (large) ;        large = large + 1 ;        if ( d (i) <= sigma_bar )            flag = 1 ;        end    end            k1 = k + 1 ;    if ( i ~= k1 )            % Apply permutation Pi of paper        t = d (k1) ;          % Interchange d (i) and d (k1)        d (k1) = d (i) ;        d (i) = t ;        j = invperm (k1) ;    % Update perm arrays        perm (j) = i ;        invperm (i) = j ;        I = [ k1 i ] ;        J = [ i k1 ] ;        Q (:, I) = Q (:, J) ; % interchange columns i and k+1        P (:, I) = P (:, J) ;    end    delta1 = d (k) ;    delta2 = d (k1) ;    t = delta1 + delta2 ;    if ( flag )        c = 1 ;        s = 0 ;    else        f = (delta1 - sigma_bar)/(delta1 - delta2) ;        s = sqrt (f*(delta1+sigma_bar)/t) ;        c = sqrt(1-s^2) ;    end    d (k1) = delta1*delta2/sigma_bar ;          % = y in paper    z (k) = s*c*(delta2 - delta1)*t/sigma_bar ; % = x in paper    R (k, k) = sigma_bar ;    if ( k > 1 )        R (1:k-1, k) = z (1:k-1)*c ; % new column of R        z (1:k-1) = -z (1:k-1)*s ;   % new column of Z    end    G1 = [ c -s           s  c ] ;    J = [ k k1 ] ;    P (:, J) = P (:, J)*G1 ;        % apply G1 to P    G2 = (1/sigma_bar)*[ c*delta1 -s*delta2                         s*delta2  c*delta1 ] ;    Q (:, J) = Q (:, J)*G2 ;        % apply G2 to QendR (p, p) = sigma_bar ;R (1:p-1, p) = z ;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -