📄 c_rbfdemo.m
字号:
echo off
% RBFDEMO demonstration for using nonlinear SVM classifier
% with a RBF kernel.
echo on;
clc
% RBFDEMO demonstration for using nonlinear SVM classifier
% with a RBF kernel.
%##########################################################################
%
% This is a demonstration script-file for contructing and
% testing a nonlinear SVM-based classifier
% (with a RBF kernel) using OSU SVM CLASSIFIER TOOLBOX.
% Note that the form of the RBF kernel is
% exp(-Gamma*|X(:,i)-X(:,j)|^2)
%
%##########################################################################
pause % Strike any key to continue (Note: use Ctrl-C to abort)
clc
%##########################################################################
%
% Load the training data and examine the dimensionity of the data
%
%##########################################################################
pause % Strike any key to continue
% load the training data
clear all
load DemoData_train
pause % Strike any key to continue
% take a look at the data, and please pay attention to the dimensions
% of the input data
who
size(Labels)
size(Samples)
pause % Strike any key to continue
clc
%##########################################################################
%
% Construct a nonlinear SVM classifier (with RBF kernel)
% using the training data
% Note that the form of the RBF kernel is
% exp(-Gamma*|X(:,i)-X(:,j)|^2)
%
%##########################################################################
pause % Strike any key to continue
% set the value of Gamma if you don't want use its default value,
% which is 1.
Gamma = 2;
% By using this format, the default values of C, Epsilon, CacheSize
% are used. That is, C=1, Epsilon=0.001, and CacheSize=45MB
[AlphaY, SVs, Bias, Parameters, nSV, nLabel] = RbfSVC(Samples, Labels, Gamma);
% End of the SVM classifier construction
%
% The resultant SVM classifier is jointly determined by
% "AlphaY", "SVs", "Bias", "Parameters", and "Ns".
%
pause % Strike any key to continue
% Save the constructed nonlinear SVM classifier
save SVMClassifier AlphaY SVs Bias Parameters nSV nLabel;
pause % Strike any key to continue
clc
%##########################################################################
%
% Test the constructed nonlinear SVM Classifier
%
%##########################################################################
pause % Strike any key to continue
% Load the constructed nonlinear SVM classifier
clear all
load SVMClassifier
pause % Strike any key to continue
% have a look at the variables determining the SVM classifier
who
pause % Strike any key to continue
% load test data
load DemoData_test
pause % Strike any key to continue
% Test the constructed SVM classifier using the test data
% begin testing ...
[ClassRate, DecisionValue, Ns, ConfMatrix, PreLabels]= SVMTest(Samples, Labels, AlphaY, SVs, Bias,Parameters, nSV, nLabel);
% end of the testing
pause % Strike any key to continue
% The resultant confusion matrix of this 4-class classification problem is:
ConfMatrix
pause % Strike any key to continue
echo off
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -