📄 281-284.html
字号:
<HTML>
<HEAD>
<META name=vsisbn content="0849398010">
<META name=vstitle content="Industrial Applications of Genetic Algorithms">
<META name=vsauthor content="Charles Karr; L. Michael Freeman">
<META name=vsimprint content="CRC Press">
<META name=vspublisher content="CRC Press LLC">
<META name=vspubdate content="12/01/98">
<META name=vscategory content="Web and Software Development: Artificial Intelligence: Other">
<TITLE>Industrial Applications of Genetic Algorithms:Development of Mobile Robot Wall-following Algorithms Using Genetic Programming</TITLE>
<!-- HEADER -->
<STYLE type="text/css">
<!--
A:hover {
color : Red;
}
-->
</STYLE>
<META NAME="ROBOTS" CONTENT="NOINDEX, NOFOLLOW">
<!--ISBN=0849398010//-->
<!--TITLE=Industrial Applications of Genetic Algorithms//-->
<!--AUTHOR=Charles Karr//-->
<!--AUTHOR=L. Michael Freeman//-->
<!--PUBLISHER=CRC Press LLC//-->
<!--IMPRINT=CRC Press//-->
<!--CHAPTER=14//-->
<!--PAGES=281-284//-->
<!--UNASSIGNED1//-->
<!--UNASSIGNED2//-->
<CENTER>
<TABLE BORDER>
<TR>
<TD><A HREF="277-280.html">Previous</A></TD>
<TD><A HREF="../ewtoc.html">Table of Contents</A></TD>
<TD><A HREF="../ch15/285-286.html">Next</A></TD>
</TR>
</TABLE>
</CENTER>
<P><BR></P>
</P>
<P>In almost every run GP is able to generate algorithms that perform reasonably well. The individual shown in Figure 14.8 makes a couple of errors, but for the most part it is exhibiting the desired behavior.
</P>
<P><A NAME="Fig9"></A><A HREF="javascript:displayWindow('images/14-09.jpg',500,549)"><IMG SRC="images/14-09t.jpg"></A>
<BR><A HREF="javascript:displayWindow('images/14-09.jpg',500,549)"><FONT COLOR="#000077"><B>Figure 14.8</B></FONT></A> Typical end result of a GP run.</P>
<P>The code for the individual displayed in Figure 14.8 is shown below. Analysis of this code (which is typical of the complexity of GP-generated algorithms) is left as an exercise for the reader.
</P>
<TABLE WIDTH="100%"><TR>
<TD WIDTH="5%">0
<TD WIDTH="95%">WhileTooFarFromWall
<TR>
<TD>1
<TD>WhileTooFarFromWall
<TR>
<TD>2
<TD>Do2
<TR>
<TD>3
<TD>Do2
<TR>
<TD>4
<TD>WhileTooCloseToWall
<TR>
<TD>5
<TD>WhileInCoridorRange
<TR>
<TD>6
<TD>TurnParallelToClosestWall
<TR>
<TD>7
<TD>Do2
<TR>
<TD>8
<TD>WhileInCoridorRange
<TR>
<TD>9
<TD>Do2
<TR>
<TD>10
<TD>WhileTooCloseToWall
<TR>
<TD>11
<TD>WhileTooFarFromWall
<TR>
<TD>12
<TD>MoveForward
<TR>
<TD>13
<TD>Do2
<TR>
<TD>14
<TD>Do2
<TR>
<TD>15
<TD>WhileTooCloseToWall
<TR>
<TD>16
<TD>TurnParallelToClosestWall
<TR>
<TD>17
<TD>Do2
<TR>
<TD>18
<TD>Do2
<TR>
<TD>19
<TD>WhileTooCloseToWall
<TR>
<TD>20
<TD>WhileInCoridorRange
<TR>
<TD>21
<TD>TurnParallelToClosestWall
<TR>
<TD>22
<TD>Do2
<TR>
<TD>23
<TD>WhileInCoridorRange
<TR>
<TD>24
<TD>Do2
<TR>
<TD>25
<TD>WhileTooCloseToWall
<TR>
<TD>26
<TD>WhileTooFarFromWall
<TR>
<TD>27
<TD>MoveForward
<TR>
<TD>28
<TD>Do2
<TR>
<TD>29
<TD>Do2
<TR>
<TD>30
<TD>WhileTooCloseToWall
<TR>
<TD>31
<TD>TurnParallelToClosestWall
<TR>
<TD>32
<TD>Do2
<TR>
<TD>33
<TD>MoveForward
<TR>
<TD>34
<TD>nTowardsClosestWall
<TR>
<TD>35
<TD>Do2
<TR>
<TD>36
<TD>MoveForward
<TR>
<TD>37
<TD>WhileInCoridorRange
<TR>
<TD>38
<TD>Do2
<TR>
<TD>39
<TD>TurnTowardsClosestWall
<TR>
<TD>40
<TD>Do2
<TR>
<TD>41
<TD>TurnParallelToClosestWall
<TR>
<TD>42
<TD>MoveForward
<TR>
<TD>43
<TD>MoveForward
<TR>
<TD>44
<TD>WhileInCoridorRange
<TR>
<TD>45
<TD>TurnAwayFromClosestWall
<TR>
<TD>46
<TD>Do2
<TR>
<TD>47
<TD>MoveForward
<TR>
<TD>48
<TD>WhileInCoridorRange
<TR>
<TD>49
<TD>Do2
<TR>
<TD>50
<TD>TurnTowardsClosestWall
<TR>
<TD>51
<TD>Do2
<TR>
<TD>52
<TD>TurnParallelToClosestWall
<TR>
<TD>53
<TD>MoveForward
<TR>
<TD>54
<TD>MoveForward
<TR>
<TD>55
<TD>WhileInCoridorRange
<TR>
<TD>56
<TD>TurnAwayFromClosestWall
<TR>
<TD>END
</TABLE>
<P><FONT SIZE="+1"><B>CONCLUSION</B></FONT></P>
<P>Genetic programming has demonstrated the capability of generating wall-following navigation algorithms from the functions and terminals provided. More generally, the experiments conducted over the course of this project have shown the feasibility of using genetic programming to develop mobile robot navigation algorithms. This project lays the foundation for planned follow-on projects of maze traversal, map generation, and full-coverage area traversal. The results of this project show enough promise to warrant further research into these more complex tasks.
</P>
<P><FONT SIZE="+1"><B>REFERENCES</B></FONT></P>
<DL>
<DD><B>1</B> Koza, J. R. (1992). <I>Genetic programming: On the programming of computers by means of natural selection</I>. Cambridge: MIT Press.
<DD><B>2</B> Reynolds, Craig W. (1994) <I>Evolution of obstacle avoidance behavior: Using noise to promote robust solutions</I>. Advances in Genetic Programming, pages 221-241. Cambridge: MIT Press.
</DL>
<P><BR></P>
<CENTER>
<TABLE BORDER>
<TR>
<TD><A HREF="277-280.html">Previous</A></TD>
<TD><A HREF="../ewtoc.html">Table of Contents</A></TD>
<TD><A HREF="../ch15/285-286.html">Next</A></TD>
</TR>
</TABLE>
</CENTER>
<hr width="90%" size="1" noshade>
<div align="center">
<font face="Verdana,sans-serif" size="1">Copyright © <a href="/reference/crc00001.html">CRC Press LLC</a></font>
</div>
<!-- all of the reference materials (books) have the footer and subfoot reveresed -->
<!-- reference_subfoot = footer -->
<!-- reference_footer = subfoot -->
</BODY>
</HTML>
<!-- END FOOTER -->
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -