⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 037-041.html

📁 遗传算法经典书籍-英文原版 是研究遗传算法的很好的资料
💻 HTML
字号:
<HTML>
<HEAD>
<META name=vsisbn content="0849398010">
<META name=vstitle content="Industrial Applications of Genetic Algorithms">
<META name=vsauthor content="Charles Karr; L. Michael Freeman">
<META name=vsimprint content="CRC Press">
<META name=vspublisher content="CRC Press LLC">
<META name=vspubdate content="12/01/98">
<META name=vscategory content="Web and Software Development: Artificial Intelligence: Other">




<TITLE>Industrial Applications of Genetic Algorithms:Genetic Algorithms for H<SUB>2</SUB> Controller Synthesis</TITLE>

<!-- HEADER -->

<STYLE type="text/css"> 
 <!--
 A:hover  {
 	color : Red;
 }
 -->
</STYLE>

<META NAME="ROBOTS" CONTENT="NOINDEX, NOFOLLOW">

<!--ISBN=0849398010//-->
<!--TITLE=Industrial Applications of Genetic Algorithms//-->
<!--AUTHOR=Charles Karr//-->
<!--AUTHOR=L. Michael Freeman//-->
<!--PUBLISHER=CRC Press LLC//-->
<!--IMPRINT=CRC Press//-->
<!--CHAPTER=3//-->
<!--PAGES=037-041//-->
<!--UNASSIGNED1//-->
<!--UNASSIGNED2//-->

<CENTER>
<TABLE BORDER>
<TR>
<TD><A HREF="035-036.html">Previous</A></TD>
<TD><A HREF="../ewtoc.html">Table of Contents</A></TD>
<TD><A HREF="041-044.html">Next</A></TD>
</TR>
</TABLE>
</CENTER>
<P><BR></P>
<P><FONT SIZE="+1"><B>PROBLEM STATEMENT</B></FONT></P>
<P>H<SUB><SMALL>2</SMALL></SUB> optimal control models the control design as a problem of minimizing the H<SUB><SMALL>2</SMALL></SUB> norm on the closed-loop transfer function while utilizing a state or a measurement feedback controller. The H<SUB><SMALL>2</SMALL></SUB> optimal control problem is a deterministic setting of the linear quadratic Gaussian (LQG) control problem. LQG control theory is a powerful design tool which involves a linear model of a plant in a state-space description. The designer assumes properties for disturbances and measurement noise and translates the design specifications into a quadratic performance criterion consisting of state variables and control signal inputs. The designer&#146;s objective is to minimize the performance criterion while at the same time, guaranteeing closed-loop stability. This involves the task of solving for the optimal compensator parameters, which are contained in the output feedback gain matrix. The formulation of the H<SUB><SMALL>2</SMALL></SUB> optimal problem proceeds as follows [1].</P>
<P>The generalized plant of a standard control problem is given by</P>
<P ALIGN="CENTER"><IMG SRC="images/03-01d.jpg"></P>
<P ALIGN="CENTER"><IMG SRC="images/03-02d.jpg"></P>
<P ALIGN="CENTER"><IMG SRC="images/03-03d.jpg"></P>
<P>where <IMG SRC="images/03-01i.jpg"> is the state vector, <IMG SRC="images/03-02i.jpg"> is the disturbance vector, <IMG SRC="images/03-03i.jpg"> is the control vector, <IMG SRC="images/03-04i.jpg"> is the performance vector, and <IMG SRC="images/03-05i.jpg"> is the measurement vector. Figure 3.1 illustrates this design framework. The following is assumed.</P>
<DL>
<DD><B>1)</B>&nbsp;&nbsp;<IMG SRC="images/03-06i.jpg"> is stabilizable and detectable.<DD><B>2)</B>&nbsp;&nbsp;<IMG SRC="images/03-07i.jpg"> is stabilizable and detectable.<DD><B>3)</B>&nbsp;&nbsp;<IMG SRC="images/03-08i.jpg"> has full column rank.<DD><B>4)</B>&nbsp;&nbsp;<IMG SRC="images/03-09i.jpg"> has full row rank.</DL>
<P>A general compensator for the system is
</P>
<P ALIGN="CENTER"><IMG SRC="images/03-04d.jpg"></P>
<P ALIGN="CENTER"><IMG SRC="images/03-05d.jpg"></P>
<P>where <IMG SRC="images/03-10i.jpg"> is the state vector of the controller. Closing the loop using negative feedback yields the closed-loop system dynamics</P>
<P ALIGN="CENTER"><IMG SRC="images/03-06d.jpg"></P>
<P ALIGN="CENTER"><IMG SRC="images/03-07d.jpg"></P>
<P>where
</P>
<P ALIGN="CENTER"><IMG SRC="images/03-08d.jpg"></P>
<P ALIGN="CENTER"><IMG SRC="images/03-09d.jpg"></P>
<P ALIGN="CENTER"><IMG SRC="images/03-10d.jpg"></P>
<P ALIGN="CENTER"><IMG SRC="images/03-11d.jpg"></P>
<P><A NAME="Fig1"></A><A HREF="javascript:displayWindow('images/03-01.jpg',350,275)"><IMG SRC="images/03-01t.jpg"></A>
<BR><A HREF="javascript:displayWindow('images/03-01.jpg',350,275)"><FONT COLOR="#000077"><B>Figure 3.1</B></FONT></A>&nbsp;&nbsp;Generalized plant with general compensator.</P>
<P>The set of all internally stabilizing compensators is defined as
</P>
<P ALIGN="CENTER"><IMG SRC="images/03-12d.jpg"></P>
<P>For an H<SUB><SMALL>2</SMALL></SUB> problem, the objective is to minimize the H2 norm on the closed-loop transfer function from disturbance inputs to performance outputs</P>
<P ALIGN="CENTER"><IMG SRC="images/03-13d.jpg"></P>
<P>If the disturbance is modeled as white noise, the objective is
</P>
<P ALIGN="CENTER"><IMG SRC="images/03-14d.jpg"></P>
<P>It can be shown that the cost can be expressed as [1]
</P>
<P ALIGN="CENTER"><IMG SRC="images/03-15d.jpg"></P>
<P>where
</P>
<P ALIGN="CENTER"><IMG SRC="images/03-16d.jpg"></P>
<P ALIGN="CENTER"><IMG SRC="images/03-17d.jpg"></P>
<P>P is the controllability grammian of <IMG SRC="images/03-11i.jpg"> and Q is the observability grammian of <IMG SRC="images/03-12i.jpg">.</P>
<P>In order to obtain the H<SUB><SMALL>2</SMALL></SUB> optimal compensator, the Lagrangian is defined as</P>
<P ALIGN="CENTER"><IMG SRC="images/03-18d.jpg"></P>
<P>where L is a symmetric matrix of multipliers. Matrix gradients are taken to determine the first-order necessary conditions
</P>
<P ALIGN="CENTER"><IMG SRC="images/03-19d.jpg"></P>
<P>Computation of an H<SUB><SMALL>2</SMALL></SUB> optimal controller for the general compensator requires the simultaneous solution of five coupled equations. This process becomes computationally expensive, and the problem is over-parametrized with such a compensator. To avoid the problem of over-parametrization, either a controller or observer canonical form can be imposed on the compensator structure so that the number of parameters is reduced to its minimal number.</P>
<P>The resulting augmented system defines a static gain output feedback problem where the compensator is represented by a minimal number of free parameters in the design matrix, G. This augmented system is shown in Figure 3.2. The closed-loop system is given by</P>
<P ALIGN="CENTER"><IMG SRC="images/03-20d.jpg"></P>
<P ALIGN="CENTER"><IMG SRC="images/03-21d.jpg"></P>
<P><A NAME="Fig2"></A><A HREF="javascript:displayWindow('images/03-02.jpg',350,269)"><IMG SRC="images/03-02t.jpg"></A>
<BR><A HREF="javascript:displayWindow('images/03-02.jpg',350,269)"><FONT COLOR="#000077"><B>Figure 3.2</B></FONT></A>&nbsp;&nbsp;Augmented system with compensator in controller canonical form.</P>
<P>The optimal compensator design for this H<SUB><SMALL>2</SMALL></SUB> optimal controller problem is obtained by finding the compensator parameters in the output feedback gain matrix, G, which minimizes the cost function of Equation (3.15). The crux of this chapter is to use a GA to find the optimal controller gain matrix, G, for the H<SUB><SMALL>2</SMALL></SUB> compensator synthesis problem. For this study, the H<SUB><SMALL>2</SMALL></SUB> optimal problem will be solved for a four-disk system (see Figure 3.3).</P>
<P><FONT SIZE="+1"><B>MOTIVATION FOR USING GENETIC ALGORITHMS</B></FONT></P>
<P>Numerous techniques have been developed to synthesize H2 controllers, such as Newton&#146;s method [4] and homotopy algorithms [1]. However, these methods have several limitations that restrict them from optimal performance. Some of these limitations include long run-times, a dependence on stable, initial guesses which are close to the optimal design, and a dependence on derivative information. GAs are not restricted by these limitations; therefore, a GA will be used to acquire a more robust and perhaps more efficient controller design.
</P>
<P>GAs are search algorithms that combine a survival-of-the-fittest approach with a structured, yet random information exchange. This combination provides a balance between the exploration of the search space, and an exploitation of successful solutions. A GA differs from traditional search methods in three main ways [5]:</P>
<DL>
<DD><B>1)</B>&nbsp;&nbsp;GAs use a coding of the parameter set, rather than the parameters themselves;
<DD><B>2)</B>&nbsp;&nbsp;GAs simultaneously consider a population of points, rather than a single point;
<DD><B>3)</B>&nbsp;&nbsp;GAs use only payoff information, rather than derivatives or other auxiliary information.
</DL>
<P>GAs require the parameter set of the optimization problem to be coded as a finite string of bits. Since a population of these strings are considered simultaneously, the chance of locating a false peak in a multimodal search space is reduced over methods that go from a single point to a single point. The coding similarities found in each population are used to differentiate good solutions from bad solutions. The use of payoff information gives each string a fitness value, without having to rely on any other auxiliary information. The fitness values for a particular string are obtained from an objective, or fitness function which dictates that string&#146;s&#147;goodness&#148;as a solution of the search space. These differences from traditional methods allow a GA to perform well with the discontinuous and vastly multimodal, noisy search spaces of H<SUB><SMALL>2</SMALL></SUB> controller synthesis.</P><P><BR></P>
<CENTER>
<TABLE BORDER>
<TR>
<TD><A HREF="035-036.html">Previous</A></TD>
<TD><A HREF="../ewtoc.html">Table of Contents</A></TD>
<TD><A HREF="041-044.html">Next</A></TD>
</TR>
</TABLE>
</CENTER>

<hr width="90%" size="1" noshade>
<div align="center">
<font face="Verdana,sans-serif" size="1">Copyright &copy; <a href="/reference/crc00001.html">CRC Press LLC</a></font>
</div>
<!-- all of the reference materials (books) have the footer and subfoot reveresed -->
<!-- reference_subfoot = footer -->
<!-- reference_footer = subfoot -->

</BODY>
</HTML>

<!-- END FOOTER -->

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -