⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s3c2410_sm501.c

📁 s3c2410 sm501 在SMDK开发包的可运行源代码
💻 C
📖 第 1 页 / 共 5 页
字号:
/**  linux/drivers/video/sm501.c***   Based on pxafb.c Copyright (C) Eric A. Thomas*   Based on sa1100fb.c Copyright (C) Eric A. Thomas*   Based on acornfb.c Copyright (C) Russell King.** This file is subject to the terms and conditions of the GNU General Public* License.  See the file COPYING in the main directory of this archive for* more details.**	        Silicon Motion SM501 Frame Buffer Driver*/#include <linux/config.h>#include <linux/module.h>#include <linux/kernel.h>#include <linux/sched.h>#include <linux/errno.h>#include <linux/string.h>#include <linux/interrupt.h>#include <linux/slab.h>#include <linux/fb.h>#include <linux/delay.h>#include <linux/pm.h>#include <linux/init.h>#include <linux/notifier.h>#include <linux/cpufreq.h>#include <linux/sysctl.h>#include <asm/hardware.h>#include <asm/io.h>#include <asm/irq.h>#include <asm/mach-types.h>#include <asm/uaccess.h>#include <linux/delay.h>#include <video/fbcon.h>#include <video/fbcon-mfb.h>#include <video/fbcon-cfb8.h>#include <video/fbcon-cfb16.h>#include <video/fbcon-cfb32.h>#define arraysize(x)	(sizeof(x)/sizeof(*(x)))#define VGA_640X480 1/** debugging?*/#undef DEBUG/** Complain if VAR is out of range.*/#define DEBUG_VAR 2#include "sm501.h"char *sm501Reg;static char *sm501Mem;typedef struct _mode_table_t{	// Horizontal timing.	int			horizontal_total;	int			horizontal_display_end;	int			horizontal_sync_start;	int			horizontal_sync_width;	polarity_t	horizontal_sync_polarity;	// Vertical timing.	int 		vertical_total;	int 		vertical_display_end;	int 		vertical_sync_start;	int 		vertical_sync_height;	polarity_t	vertical_sync_polarity;	// Refresh timing.	long		pixel_clock;	long		horizontal_frequency;	long		vertical_frequency;} mode_table_t, *pmode_table_t;// Clock value structure.typedef struct clock_select_t           //hqj_add_function start{	long	mclk;	int		divider;	int		shift;} clock_select_t, *pclock_select_t;typedef struct _reg_table_t{	unsigned long	clock;	unsigned long	control;	unsigned long	fb_width;	unsigned long	horizontal_total;	unsigned long	horizontal_sync;	unsigned long	vertical_total;	unsigned long	vertical_sync;	unsigned long	width;	unsigned long	height;	display_t		display;} reg_table_t, *preg_table_t;//int sm501mode = 10;      //hqj   1024*768int sm501mode = 6;      //hqj   800*600     //hqj_06_12_20int sm501bpp = 16;int	sm501out = 1;        //hqjstatic int error;typedef enum _panel_state_t{	PANEL_OFF,	PANEL_ON,}panel_state_t;mode_table_t mode_table[] ={	/*----------------------------------------------------------------------------------------	* H.	H.    H.     H.   H.        V.   V.    V.    V.   V.        Pixel     H.     V.	* tot.	disp. sync   sync sync      tot. disp. sync  sync sinc      clock     freq.  freq.	*      end   start  wdth polarity       end   start hght polarity	*---------------------------------------------------------------------------------------*/	/* 640 x 480 */	{  800, 640,  656,   96,  NEGATIVE, 525, 480,  490,  2,   NEGATIVE, 25175000, 31469, 60 },	{  832, 640,  664,   40,  NEGATIVE, 520, 480,  489,  3,   NEGATIVE, 31500000, 37861, 72 },	{  840, 640,  656,   64,  NEGATIVE, 500, 480,  481,  3,   NEGATIVE, 31500000, 37500, 75 },	{  832, 640,  696,   56,  NEGATIVE, 509, 480,  481,  3,   NEGATIVE, 36000000, 43269, 85 },	/* 800 x 600 */	{ 1024, 800,  824,   72,  POSITIVE, 625, 600,  601,  2,   POSITIVE, 36000000, 35156, 56 },	{ 1056, 800,  840,  128,  POSITIVE, 628, 600,  601,  4,   POSITIVE, 40000000, 37879, 60 },	{ 1040, 800,  856,  120,  POSITIVE, 666, 600,  637,  6,   POSITIVE, 50000000, 48077, 72 },	{ 1056, 800,  816,   80,  POSITIVE, 625, 600,  601,  3,   POSITIVE, 49500000, 46875, 75 },	{ 1048, 800,  832,   64,  POSITIVE, 631, 600,  601,  3,   POSITIVE, 56250000, 53674, 85 },	/* 1024 x 768*/	{ 1344, 1024, 1048, 136,  NEGATIVE, 806, 768,  771,  6,   NEGATIVE, 65000000, 48363, 60 },	{ 1328, 1024, 1048, 136,  NEGATIVE, 806, 768,  771,  6,   NEGATIVE, 75000000, 56476, 70 },	{ 1312, 1024, 1040,  96,  POSITIVE, 800, 768,  769,  3,   POSITIVE, 78750000, 60023, 75 },	{ 1376, 1024, 1072,  96,  POSITIVE, 808, 768,  769,  3,   POSITIVE, 94500000, 68677, 85 },	/* End of table. */	{ 0, 0, 0, 0, NEGATIVE, 0, 0, 0, 0, NEGATIVE, 0, 0, 0 },};//hqj_add_function end// Perform a rounded division.long roundDiv(long num, long denom){	/* n / d + 1 / 2 = (2n + d) / 2d */	return (2 * num + denom) / (2 * denom);}// Finds clock closest to the requested.long findClock(long requested_clock, clock_select_t *clock, display_t display)     //hqj_add_function{	long	mclk;	int		divider, shift;	long	best_diff = 999999999;	// Try 288MHz and 336MHz clocks.	for (mclk = 288000000; mclk <= 336000000; mclk += 48000000)	{		// For CRT, try dividers 1 and 3, for panel, try divider 5 as well.		for (divider = 1; divider <= (display == PANEL ? 5 : 3);			divider += 2)		{			// Try all 8 shift values.			for (shift = 0; shift < 8; shift++)			{				// Calculate difference with requested clock.				long diff = roundDiv(mclk, divider << shift) - requested_clock;				if (diff < 0)				{					diff = -diff;				}				// If the difference is less than the current, use it.				if (diff < best_diff)				{					// Store best difference.					best_diff = diff;					// Store clock values.					clock->mclk = mclk;					clock->divider = divider;					clock->shift = shift;				}			}		}	}	printk("clock->mclk=%d, clock->divider=%d,clock->shift=%d\n",clock->mclk,clock->divider,clock->shift);	//clock->shift = 1;	//clock->divider = 3;	// printk("force shift=1,divider=2\n");	// Return best clock.	return clock->mclk / (clock->divider << clock->shift);}// Fill the register structure.void setModeRegisters(reg_table_t *register_table, mode_table_t *mode, display_t display, int bpp)   //hqj_add_function{	clock_select_t clock;	memset(&clock, 0, sizeof(clock));	//printk(" setModeRegisters\n");	// Calculate the clock register values.	findClock(mode->pixel_clock * 2, &clock, display);	if (display == PANEL)	{		// Set clock value for panel.		register_table->clock			= (clock.mclk == 288000000			? FIELD_SET(0, CURRENT_POWER_CLOCK, P2XCLK_SELECT, 288)			: FIELD_SET(0, CURRENT_POWER_CLOCK, P2XCLK_SELECT, 336))			| (clock.divider == 1			? FIELD_SET(0, CURRENT_POWER_CLOCK, P2XCLK_DIVIDER, 1)			: (clock.divider == 3			? FIELD_SET(0, CURRENT_POWER_CLOCK, P2XCLK_DIVIDER, 3)			: FIELD_SET(0, CURRENT_POWER_CLOCK, P2XCLK_DIVIDER, 5)))			| FIELD_VALUE(0, CURRENT_POWER_CLOCK, P2XCLK_SHIFT, clock.shift);		//printk("setModeRegisters ::CURRENT_POWER_CLOCK=%x\n",regRead32(CURRENT_POWER_CLOCK));		//printk("register_table->clock=%d\n",register_table->clock);		// Set control register value.		register_table->control			= (mode->vertical_sync_polarity == POSITIVE			? FIELD_SET(0, PANEL_DISPLAY_CTRL, VSYNC_PHASE, ACTIVE_HIGH)			: FIELD_SET(0, PANEL_DISPLAY_CTRL, VSYNC_PHASE, ACTIVE_LOW))			| (mode->horizontal_sync_polarity == POSITIVE			? FIELD_SET(0, PANEL_DISPLAY_CTRL, HSYNC_PHASE, ACTIVE_HIGH)			: FIELD_SET(0, PANEL_DISPLAY_CTRL, HSYNC_PHASE, ACTIVE_LOW))			| FIELD_SET(0, PANEL_DISPLAY_CTRL, TIMING, ENABLE)			| FIELD_SET(0, PANEL_DISPLAY_CTRL, PLANE, ENABLE)			| (bpp == 8			? FIELD_SET(0, PANEL_DISPLAY_CTRL, FORMAT, 8)			: (bpp == 16			? FIELD_SET(0, PANEL_DISPLAY_CTRL, FORMAT, 16)			: FIELD_SET(0, PANEL_DISPLAY_CTRL, FORMAT, 32)));		// Set timing registers.		register_table->horizontal_total			= FIELD_VALUE(0, PANEL_HORIZONTAL_TOTAL, TOTAL,			mode->horizontal_total - 1)			| FIELD_VALUE(0, PANEL_HORIZONTAL_TOTAL, DISPLAY_END,			mode->horizontal_display_end - 1);		register_table->horizontal_sync			= FIELD_VALUE(0, PANEL_HORIZONTAL_SYNC, WIDTH,			mode->horizontal_sync_width)			| FIELD_VALUE(0, PANEL_HORIZONTAL_SYNC, START,			mode->horizontal_sync_start - 1);		register_table->vertical_total			= FIELD_VALUE(0, PANEL_VERTICAL_TOTAL, TOTAL,			mode->vertical_total - 1)			| FIELD_VALUE(0, PANEL_VERTICAL_TOTAL, DISPLAY_END,			mode->vertical_display_end - 1);		register_table->vertical_sync			= FIELD_VALUE(0, PANEL_VERTICAL_SYNC, HEIGHT,			mode->vertical_sync_height)			| FIELD_VALUE(0, PANEL_VERTICAL_SYNC, START,			mode->vertical_sync_start - 1);	}	else	{		// Set clock value for CRT.		register_table->clock			= (clock.mclk == 288000000			? FIELD_SET(0, CURRENT_POWER_CLOCK, V2XCLK_SELECT, 288)			: FIELD_SET(0, CURRENT_POWER_CLOCK, V2XCLK_SELECT, 336))			| (clock.divider == 1			? FIELD_SET(0, CURRENT_POWER_CLOCK, V2XCLK_DIVIDER, 1)			: FIELD_SET(0, CURRENT_POWER_CLOCK, V2XCLK_DIVIDER, 3))			| FIELD_VALUE(0, CURRENT_POWER_CLOCK, V2XCLK_SHIFT, clock.shift);		// Set control register value.		register_table->control			= (mode->vertical_sync_polarity == POSITIVE			? FIELD_SET(0, CRT_DISPLAY_CTRL, VSYNC_PHASE, ACTIVE_HIGH)			: FIELD_SET(0, CRT_DISPLAY_CTRL, VSYNC_PHASE, ACTIVE_LOW))			| (mode->horizontal_sync_polarity == POSITIVE			? FIELD_SET(0, CRT_DISPLAY_CTRL, HSYNC_PHASE, ACTIVE_HIGH)			: FIELD_SET(0, CRT_DISPLAY_CTRL, HSYNC_PHASE, ACTIVE_LOW))			| FIELD_SET(0, CRT_DISPLAY_CTRL, SELECT, CRT)			| FIELD_SET(0, CRT_DISPLAY_CTRL, TIMING, ENABLE)			| FIELD_SET(0, CRT_DISPLAY_CTRL, PLANE, ENABLE)			| (bpp == 8			? FIELD_SET(0, CRT_DISPLAY_CTRL, FORMAT, 8)			: (bpp == 16			? FIELD_SET(0, CRT_DISPLAY_CTRL, FORMAT, 16)			: FIELD_SET(0, CRT_DISPLAY_CTRL, FORMAT, 32)));		// Set timing registers.		register_table->horizontal_total			= FIELD_VALUE(0, CRT_HORIZONTAL_TOTAL, TOTAL,			mode->horizontal_total - 1)			| FIELD_VALUE(0, CRT_HORIZONTAL_TOTAL, DISPLAY_END,			mode->horizontal_display_end - 1);		register_table->horizontal_sync			= FIELD_VALUE(0, CRT_HORIZONTAL_SYNC, WIDTH,			mode->horizontal_sync_width)			| FIELD_VALUE(0, CRT_HORIZONTAL_SYNC, START,			mode->horizontal_sync_start - 1);		register_table->vertical_total			= FIELD_VALUE(0, CRT_VERTICAL_TOTAL, TOTAL,			mode->vertical_total - 1)			| FIELD_VALUE(0, CRT_VERTICAL_TOTAL, DISPLAY_END,			mode->vertical_display_end - 1);		register_table->vertical_sync			= FIELD_VALUE(0, CRT_VERTICAL_SYNC, HEIGHT,			mode->vertical_sync_height)			| FIELD_VALUE(0, CRT_VERTICAL_SYNC, START,			mode->vertical_sync_start - 1);	}	// Calculate frame buffer width and height.	register_table->fb_width = mode->horizontal_display_end * (bpp / 8);	register_table->width = mode->horizontal_display_end;	register_table->height = mode->vertical_display_end;	// Save display type.	register_table->display = display;}mode_table_t *findMode(mode_table_t *mode_table, int width, int height, long refresh_rate){ //printk("w=%d,h=%d,r=%d\n",width, height, refresh_rate);	// Walk the entire mode table.	while (mode_table->pixel_clock != 0)	{  //printk("mode_table_t w=%d,h=%d,r=%d\n",mode_table->horizontal_display_end, mode_table->vertical_display_end, mode_table->vertical_frequency);		// If this mode matches the requested mode, return it!		if ((mode_table->horizontal_display_end == width)			&& (mode_table->vertical_display_end == height)			&& (mode_table->vertical_frequency == refresh_rate))		{			//printk("mode_table_t w=%d,h=%d,r=%d\n",mode_table->horizontal_display_end, mode_table->vertical_display_end, mode_table->vertical_frequency);			return(mode_table);		}		// Next entry in the mode table.		mode_table++;	}	// No mode found.	return(NULL);}// Converts the VESA timing into Voyager timing.void adjustMode(mode_table_t *vesaMode, mode_table_t *mode, display_t display){	long blank_width, sync_start, sync_width;	clock_select_t clock;	//printk("adjustMode\n");	// Calculate the VESA line and screen frequencies.	vesaMode->horizontal_frequency = roundDiv(vesaMode->pixel_clock, vesaMode->horizontal_total);	vesaMode->vertical_frequency = roundDiv(vesaMode->horizontal_frequency, vesaMode->vertical_total);	// Calculate the sync percentages of the VESA mode.	blank_width = vesaMode->horizontal_total - vesaMode->horizontal_display_end;	sync_start = roundDiv((vesaMode->horizontal_sync_start - vesaMode->horizontal_display_end) * 100, blank_width);	sync_width = roundDiv(vesaMode->horizontal_sync_width * 100, blank_width);	// Copy VESA mode into Voyager mode.	*mode = *vesaMode;	// Find the best pixel clock.	mode->pixel_clock = findClock(vesaMode->pixel_clock * 2, &clock, display) / 2;	// Calculate the horizontal total based on the pixel clock and VESA line	// frequency.	mode->horizontal_total = roundDiv(mode->pixel_clock, vesaMode->horizontal_frequency);	// Calculate the sync start and width based on the VESA percentages.	blank_width = mode->horizontal_total - mode->horizontal_display_end;	mode->horizontal_sync_start = mode->horizontal_display_end + roundDiv(blank_width * sync_start, 100);	mode->horizontal_sync_width = roundDiv(blank_width * sync_width, 100);	// Calculate the line and screen frequencies.	mode->horizontal_frequency = roundDiv(mode->pixel_clock, mode->horizontal_total);	mode->vertical_frequency = roundDiv(mode->horizontal_frequency, mode->vertical_total);	//printk("horizontal_total=%d\n",mode->horizontal_total);	//printk("horizontal_display_end=%d\n",mode->horizontal_display_end);	//printk("horizontal_sync_start=%d\n",mode->horizontal_sync_start);	//printk("horizontal_sync_width=%d\n",mode->horizontal_sync_width);	//printk("vertical_total=%d\n",mode->vertical_total);	//printk("vertical_display_end=%d\n",mode->vertical_display_end);	//printk("vertical_sync_start=%d\n",mode->vertical_sync_start);	//printk("vertical_sync_height=%d\n",mode->vertical_sync_height);	//printk("pixel_clock=%d\n",mode->pixel_clock);	//printk("horizontal_frequency=%d\n",mode->horizontal_frequency);	//printk("vertical_frequency=%d\n",mode->vertical_frequency);}u_long regRead32(u_long nOffset){#if DEBUG > 1	u_long ret = *(volatile unsigned long *)(sm501Reg+nOffset);	if (DEBUG)		printk("%s: %#lx --> %#lx\n", __FUNCTION__, nOffset, ret);	return ret;#else	return *(volatile unsigned long *)(sm501Reg+nOffset);#endif}void regWrite32(u_long nOffset, u_long nData){	u_long readback;	//if (nOffset < 0x00080800)	//printk("nOffset < 0x00080800 %s: %#lx <-- %#lx\n", __FUNCTION__, nOffset, nData);	*(volatile unsigned long *)(sm501Reg+nOffset) = nData;	readback = *(volatile unsigned long *)(sm501Reg+nOffset);	if (readback != nData)		printk("Warning: offset=%#lx  writedata=%#lx <-- readout=%#lx\n",nOffset, nData, readback);}void memWrite32(u_long nOffset, u_long nData){#if DEBUG > 1	u_long readback;	//printk("%s: %#lx <-- %#lx\n", __FUNCTION__, nOffset, nData);	*(volatile unsigned long *)(sm501Mem+nOffset) = nData;	readback = *(volatile unsigned long *)(sm501Mem+nOffset);	if (readback != nData)		printk("Warning: %#lx\n", readback);#else	*(volatile unsigned long *)(sm501Mem+nOffset) = nData;	//printk("%s: %#lx <-- %#lx\n", __FUNCTION__, nOffset, nData);#endif}static int __init sm501_detect(void){	int sm501_device_id =0;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -