📄 cordbscs.c
字号:
/* See cord.h for definition. We assume i is in range. */int CORD_iter5(CORD x, size_t i, CORD_iter_fn f1, CORD_batched_iter_fn f2, void * client_data){ if (x == 0) return(0); if (CORD_IS_STRING(x)) { register const char *p = x+i; if (*p == '\0') ABORT("2nd arg to CORD_iter5 too big"); if (f2 != CORD_NO_FN) { return((*f2)(p, client_data)); } else { while (*p) { if ((*f1)(*p, client_data)) return(1); p++; } return(0); } } else if (IS_CONCATENATION(x)) { register struct Concatenation * conc = &(((CordRep *)x) -> concatenation); if (i > 0) { register size_t left_len = LEFT_LEN(conc); if (i >= left_len) { return(CORD_iter5(conc -> right, i - left_len, f1, f2, client_data)); } } if (CORD_iter5(conc -> left, i, f1, f2, client_data)) { return(1); } return(CORD_iter5(conc -> right, 0, f1, f2, client_data)); } else /* function */ { register struct Function * f = &(((CordRep *)x) -> function); register size_t j; register size_t lim = f -> len; for (j = i; j < lim; j++) { if ((*f1)((*(f -> fn))(j, f -> client_data), client_data)) { return(1); } } return(0); }} #undef CORD_iterint CORD_iter(CORD x, CORD_iter_fn f1, void * client_data){ return(CORD_iter5(x, 0, f1, CORD_NO_FN, client_data));}int CORD_riter4(CORD x, size_t i, CORD_iter_fn f1, void * client_data){ if (x == 0) return(0); if (CORD_IS_STRING(x)) { register const char *p = x + i; register char c; for(;;) { c = *p; if (c == '\0') ABORT("2nd arg to CORD_riter4 too big"); if ((*f1)(c, client_data)) return(1); if (p == x) break; p--; } return(0); } else if (IS_CONCATENATION(x)) { register struct Concatenation * conc = &(((CordRep *)x) -> concatenation); register CORD left_part = conc -> left; register size_t left_len; left_len = LEFT_LEN(conc); if (i >= left_len) { if (CORD_riter4(conc -> right, i - left_len, f1, client_data)) { return(1); } return(CORD_riter4(left_part, left_len - 1, f1, client_data)); } else { return(CORD_riter4(left_part, i, f1, client_data)); } } else /* function */ { register struct Function * f = &(((CordRep *)x) -> function); register size_t j; for (j = i; ; j--) { if ((*f1)((*(f -> fn))(j, f -> client_data), client_data)) { return(1); } if (j == 0) return(0); } }}int CORD_riter(CORD x, CORD_iter_fn f1, void * client_data){ return(CORD_riter4(x, CORD_len(x) - 1, f1, client_data));}/* * The following functions are concerned with balancing cords. * Strategy: * Scan the cord from left to right, keeping the cord scanned so far * as a forest of balanced trees of exponentialy decreasing length. * When a new subtree needs to be added to the forest, we concatenate all * shorter ones to the new tree in the appropriate order, and then insert * the result into the forest. * Crucial invariants: * 1. The concatenation of the forest (in decreasing order) with the * unscanned part of the rope is equal to the rope being balanced. * 2. All trees in the forest are balanced. * 3. forest[i] has depth at most i. */typedef struct { CORD c; size_t len; /* Actual length of c */} ForestElement;static size_t min_len [ MAX_DEPTH ];static int min_len_init = 0;int CORD_max_len;typedef ForestElement Forest [ MAX_DEPTH ]; /* forest[i].len >= fib(i+1) */ /* The string is the concatenation */ /* of the forest in order of DECREASING */ /* indices. */void CORD_init_min_len(){ register int i; register size_t last, previous, current; min_len[0] = previous = 1; min_len[1] = last = 2; for (i = 2; i < MAX_DEPTH; i++) { current = last + previous; if (current < last) /* overflow */ current = last; min_len[i] = current; previous = last; last = current; } CORD_max_len = last - 1; min_len_init = 1;}void CORD_init_forest(ForestElement * forest, size_t max_len){ register int i; for (i = 0; i < MAX_DEPTH; i++) { forest[i].c = 0; if (min_len[i] > max_len) return; } ABORT("Cord too long");}/* Add a leaf to the appropriate level in the forest, cleaning *//* out lower levels as necessary. *//* Also works if x is a balanced tree of concatenations; however *//* in this case an extra concatenation node may be inserted above x; *//* This node should not be counted in the statement of the invariants. */void CORD_add_forest(ForestElement * forest, CORD x, size_t len){ register int i = 0; register CORD sum = CORD_EMPTY; register size_t sum_len = 0; while (len > min_len[i + 1]) { if (forest[i].c != 0) { sum = CORD_cat(forest[i].c, sum); sum_len += forest[i].len; forest[i].c = 0; } i++; } /* Sum has depth at most 1 greter than what would be required */ /* for balance. */ sum = CORD_cat(sum, x); sum_len += len; /* If x was a leaf, then sum is now balanced. To see this */ /* consider the two cases in which forest[i-1] either is or is */ /* not empty. */ while (sum_len >= min_len[i]) { if (forest[i].c != 0) { sum = CORD_cat(forest[i].c, sum); sum_len += forest[i].len; /* This is again balanced, since sum was balanced, and has */ /* allowable depth that differs from i by at most 1. */ forest[i].c = 0; } i++; } i--; forest[i].c = sum; forest[i].len = sum_len;}CORD CORD_concat_forest(ForestElement * forest, size_t expected_len){ register int i = 0; CORD sum = 0; size_t sum_len = 0; while (sum_len != expected_len) { if (forest[i].c != 0) { sum = CORD_cat(forest[i].c, sum); sum_len += forest[i].len; } i++; } return(sum);}/* Insert the frontier of x into forest. Balanced subtrees are *//* treated as leaves. This potentially adds one to the depth *//* of the final tree. */void CORD_balance_insert(CORD x, size_t len, ForestElement * forest){ register int depth; if (CORD_IS_STRING(x)) { CORD_add_forest(forest, x, len); } else if (IS_CONCATENATION(x) && ((depth = DEPTH(x)) >= MAX_DEPTH || len < min_len[depth])) { register struct Concatenation * conc = &(((CordRep *)x) -> concatenation); size_t left_len = LEFT_LEN(conc); CORD_balance_insert(conc -> left, left_len, forest); CORD_balance_insert(conc -> right, len - left_len, forest); } else /* function or balanced */ { CORD_add_forest(forest, x, len); }}CORD CORD_balance(CORD x){ Forest forest; register size_t len; if (x == 0) return(0); if (CORD_IS_STRING(x)) return(x); if (!min_len_init) CORD_init_min_len(); len = LEN(x); CORD_init_forest(forest, len); CORD_balance_insert(x, len, forest); return(CORD_concat_forest(forest, len));}/* Position primitives *//* Private routines to deal with the hard cases only: *//* P contains a prefix of the path to cur_pos. Extend it to a full *//* path and set up leaf info. *//* Return 0 if past the end of cord, 1 o.w. */void CORD__extend_path(register CORD_pos p){ register struct CORD_pe * current_pe = &(p[0].path[p[0].path_len]); register CORD top = current_pe -> pe_cord; register size_t pos = p[0].cur_pos; register size_t top_pos = current_pe -> pe_start_pos; register size_t top_len = GEN_LEN(top); /* Fill in the rest of the path. */ while(!CORD_IS_STRING(top) && IS_CONCATENATION(top)) { register struct Concatenation * conc = &(((CordRep *)top) -> concatenation); register size_t left_len; left_len = LEFT_LEN(conc); current_pe++; if (pos >= top_pos + left_len) { current_pe -> pe_cord = top = conc -> right; current_pe -> pe_start_pos = top_pos = top_pos + left_len; top_len -= left_len; } else { current_pe -> pe_cord = top = conc -> left; current_pe -> pe_start_pos = top_pos; top_len = left_len; } p[0].path_len++; } /* Fill in leaf description for fast access. */ if (CORD_IS_STRING(top)) { p[0].cur_leaf = top; p[0].cur_start = top_pos; p[0].cur_end = top_pos + top_len; } else { p[0].cur_end = 0; } if (pos >= top_pos + top_len) p[0].path_len = CORD_POS_INVALID;}char CORD__pos_fetch(register CORD_pos p){ /* Leaf is a function node */ struct CORD_pe * pe = &((p)[0].path[(p)[0].path_len]); CORD leaf = pe -> pe_cord; register struct Function * f = &(((CordRep *)leaf) -> function); if (!IS_FUNCTION(leaf)) ABORT("CORD_pos_fetch: bad leaf"); return ((*(f -> fn))(p[0].cur_pos - pe -> pe_start_pos, f -> client_data));}void CORD__next(register CORD_pos p){ register size_t cur_pos = p[0].cur_pos + 1; register struct CORD_pe * current_pe = &((p)[0].path[(p)[0].path_len]); register CORD leaf = current_pe -> pe_cord; /* Leaf is not a string or we're at end of leaf */ p[0].cur_pos = cur_pos; if (!CORD_IS_STRING(leaf)) { /* Function leaf */ register struct Function * f = &(((CordRep *)leaf) -> function); register size_t start_pos = current_pe -> pe_start_pos; register size_t end_pos = start_pos + f -> len; if (cur_pos < end_pos) { /* Fill cache and return. */ register size_t i; register size_t limit = cur_pos + FUNCTION_BUF_SZ; register CORD_fn fn = f -> fn; register void * client_data = f -> client_data; if (limit > end_pos) { limit = end_pos; } for (i = cur_pos; i < limit; i++) { p[0].function_buf[i - cur_pos] = (*fn)(i - start_pos, client_data); } p[0].cur_start = cur_pos; p[0].cur_leaf = p[0].function_buf; p[0].cur_end = limit; return; } } /* End of leaf */ /* Pop the stack until we find two concatenation nodes with the */ /* same start position: this implies we were in left part. */ { while (p[0].path_len > 0 && current_pe[0].pe_start_pos != current_pe[-1].pe_start_pos) { p[0].path_len--; current_pe--; } if (p[0].path_len == 0) { p[0].path_len = CORD_POS_INVALID; return; } } p[0].path_len--; CORD__extend_path(p);}void CORD__prev(register CORD_pos p){ register struct CORD_pe * pe = &(p[0].path[p[0].path_len]); if (p[0].cur_pos == 0) { p[0].path_len = CORD_POS_INVALID; return; } p[0].cur_pos--; if (p[0].cur_pos >= pe -> pe_start_pos) return; /* Beginning of leaf */ /* Pop the stack until we find two concatenation nodes with the */ /* different start position: this implies we were in right part. */ { register struct CORD_pe * current_pe = &((p)[0].path[(p)[0].path_len]); while (p[0].path_len > 0 && current_pe[0].pe_start_pos == current_pe[-1].pe_start_pos) { p[0].path_len--; current_pe--; } } p[0].path_len--; CORD__extend_path(p);}#undef CORD_pos_fetch#undef CORD_next#undef CORD_prev#undef CORD_pos_to_index#undef CORD_pos_to_cord#undef CORD_pos_validchar CORD_pos_fetch(register CORD_pos p){ if (p[0].cur_start <= p[0].cur_pos && p[0].cur_pos < p[0].cur_end) { return(p[0].cur_leaf[p[0].cur_pos - p[0].cur_start]); } else { return(CORD__pos_fetch(p)); }}void CORD_next(CORD_pos p){ if (p[0].cur_pos < p[0].cur_end - 1) { p[0].cur_pos++; } else { CORD__next(p); }}void CORD_prev(CORD_pos p){ if (p[0].cur_end != 0 && p[0].cur_pos > p[0].cur_start) { p[0].cur_pos--; } else { CORD__prev(p); }}size_t CORD_pos_to_index(CORD_pos p){ return(p[0].cur_pos);}CORD CORD_pos_to_cord(CORD_pos p){ return(p[0].path[0].pe_cord);}int CORD_pos_valid(CORD_pos p){ return(p[0].path_len != CORD_POS_INVALID);}void CORD_set_pos(CORD_pos p, CORD x, size_t i){ if (x == CORD_EMPTY) { p[0].path_len = CORD_POS_INVALID; return; } p[0].path[0].pe_cord = x; p[0].path[0].pe_start_pos = 0; p[0].path_len = 0; p[0].cur_pos = i; CORD__extend_path(p);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -