⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 chap02.htm

📁 数字图像处理入门. 一位图像处理高手写的书. 从图像处理的最基础开始,然后慢慢以一些例子做说明,进入图像处理的更高阶段.学习图像处理不可多得的比较朴实的书
💻 HTM
📖 第 1 页 / 共 5 页
字号:
        <p align=center style='text-align:center;line-height:18.0pt'><b><span
  style='font-family:宋体;"Times New Roman"'>图</span>2.8&nbsp;&nbsp;&nbsp;&nbsp;   
          </b><b><span style='font-family:
  宋体;&quot;Times New Roman&quot;'>旋转后的图</span><span
  lang=EN-US></span></b></p>
      </td>
    </tr>
  </table>
  <p style='line-height:18.0pt'><span
style='font-family:宋体;"Times New Roman"'>可以看出,旋转后图象变大了。另一种做法是不让图象变大,转出的部分被裁剪掉。如图</span><span
lang=EN-US>2.9</span><span style='font-family:宋体;
&quot;Times New Roman&quot;'>所示。</span></p>
  <p style='line-height:18.0pt'><span
style='font-family:宋体;"Times New Roman"'>我们采用第一种做法,首先给出变换矩阵。在我们熟悉的坐标系中,将一个点顺时针旋转</span><span
lang=EN-US>a</span><span style='font-family:宋体;
&quot;Times New Roman&quot;'>角后的坐标变换公式,如图</span><span lang=EN-US>2.10</span><span
style='font-family:宋体;"Times New Roman"'>所示,</span><span lang=EN-US>r</span><span style='font-family:
宋体;&quot;Times New Roman&quot;'>为该点到原点的距离,在旋转过程中,</span><span
lang=EN-US>r</span><span style='font-family:宋体;
&quot;Times New Roman&quot;'>保持不变;</span><span lang=EN-US>b</span><span
style='font-family:宋体;"Times New Roman"'>为</span><span lang=EN-US>r</span><span style='font-family:
宋体;&quot;Times New Roman&quot;'>与</span><span
lang=EN-US>x</span><span style='font-family:宋体;
&quot;Times New Roman&quot;'>轴之间的夹角。</span></p>
  <table border=0 cellspacing=0 cellpadding=0>
    <tr> 
      <td width=276 valign=bottom class="Normal"> 
        <p class=a style='line-height:18.0pt'><span lang=EN-US> <img width=138 height=106
  src="chap02.files/image025.jpg"  v:shapes="_x0000_i1029"> </span></p>
        <p align=center style='text-align:center;line-height:18.0pt'><b><span
  style='font-family:宋体;"Times New Roman"'>图</span><span lang=EN-US>2.9 </span></b><b><span  
  style='font-family:宋体;"Times New Roman"'>旋转后保持原图大小,</span><span lang=EN-US></span></b></p>
        <p align=center style='text-align:center;line-height:18.0pt'><b><span
  style='font-family:宋体;"Times New Roman"'>转出的部分被裁掉</span></b></p>
      </td>
      <td width=276 valign=bottom class="Normal"> 
        <p style='line-height:18.0pt'><span lang=EN-US> <img width=235 height=208
  src="chap02.files/image027.jpg"  v:shapes="_x0000_i1030"> </span></p>
        <p align=center style='text-align:center;line-height:18.0pt'><b><span
  style='font-family:宋体;"Times New Roman"'>图</span>2.10&nbsp;&nbsp; </b><b><span style='font-family:宋体;"Times New Roman";"Times New Roman"'>旋转示意图</span><span  
  lang=EN-US></span></b></p>
      </td>
    </tr>
  </table>
  <p style='line-height:18.0pt'><span
style='font-family:宋体;"Times New Roman"'>旋转前:</span><span lang=EN-US>x<sub>0</sub>=rcosb</span><span
style='font-family:宋体;"Times New Roman"'>;</span><span lang=EN-US>y<sub>0</sub>=rsinb</span></p>
  <p style='line-height:18.0pt'><span
style='font-family:宋体;"Times New Roman"'>旋转</span><span lang=EN-US>a</span><span style='font-family:
宋体;&quot;Times New Roman&quot;'>角度后:</span></p>
  <p style='line-height:18.0pt'><span
lang=EN-US>x<sub>1</sub>=rcos(b-a)=rcosbcosa+rsinbsina=x<sub>0</sub>cosa+y<sub>0</sub>sina</span><span
style='font-family:宋体;"Times New Roman"'>;</span></p>
  <p style='line-height:18.0pt'><span
lang=EN-US>y<sub>1</sub>=rsin(b-a)=rsinbcosa-rcosbsina=-x<sub>0</sub>sina+y<sub>0</sub>cosa</span><span
style='font-family:宋体;"Times New Roman"'>;</span></p>
  <p style='line-height:18.0pt'><span
style='font-family:宋体;"Times New Roman"'>以矩阵的形式表示:</span></p>
  <p align=center style='text-align:center;line-height:18.0pt'><span
lang=EN-US><sub> <img width=292 height=75
src="chap02.files/image029.gif"  v:shapes="_x0000_i1031"> </sub> </span></p>
  <p align=right style='text-align:right;line-height:18.0pt'><span
lang=EN-US>(2.5)</span></p>
  <p style='line-height:18.0pt'><span
style='font-family:宋体;"Times New Roman"'>上面的公式中,坐标系</span><span lang=EN-US>xoy</span><span
style='font-family:宋体;"Times New Roman"'>是以图象的中心为原点,向右为</span><span lang=EN-US>x</span><span
style='font-family:宋体;"Times New Roman"'>轴正方向,向上为</span><span lang=EN-US>y</span><span
style='font-family:宋体;"Times New Roman"'>轴正方向。它和以图象左上角点为原点</span><span lang=EN-US>o’</span><span
style='font-family:宋体;"Times New Roman"'>,向右为</span><span lang=EN-US>x’</span><span style='font-family:
宋体;&quot;Times New Roman&quot;'>轴正方向,向下为</span><span
lang=EN-US>y’</span><span style='font-family:宋体;
&quot;Times New Roman&quot;'>轴正方向的坐标系</span><span lang=EN-US>x’o’y’</span><span
style='font-family:宋体;"Times New Roman"'>之间的转换关系如何呢?如图</span><span lang=EN-US>2.11</span><span
style='font-family:宋体;"Times New Roman"'>所示。</span></p>
  <p class=a style='line-height:18.0pt'><span lang=EN-US> <img width=207 height=160
src="chap02.files/image031.jpg"  v:shapes="_x0000_i1032"> </span></p>
  <p align=center style='text-align:center;line-height:18.0pt'><b><span
style='font-family:宋体;"Times New Roman"'>图</span>2.11&nbsp;&nbsp;&nbsp; </b><b><span style='font-family:宋体;  
&quot;Times New Roman&quot;'>两种坐标系间的转换关系</span><span
lang=EN-US></span></b></p>
  <p style='line-height:18.0pt'><span
style='font-family:宋体;"Times New Roman"'>设图象的宽为</span><span lang=EN-US>w</span><span
style='font-family:宋体;"Times New Roman"'>,高为</span><span lang=EN-US>h</span><span style='font-family:
宋体;&quot;Times New Roman&quot;'>,容易得到:</span></p>
  <p align=center style='text-align:center;line-height:18.0pt'><span
lang=EN-US><sub> <img width=296 height=75
src="chap02.files/image033.gif"  v:shapes="_x0000_i1033"> </sub> </span></p>
  <p align=right style='text-align:right;line-height:18.0pt'><span
lang=EN-US>(2.6)</span></p>
  <p style='line-height:18.0pt'><span
style='font-family:宋体;"Times New Roman"'>逆变换为:</span></p>
  <p align=center style='text-align:center;line-height:18.0pt'><span
lang=EN-US><sub> <img width=284 height=75
src="chap02.files/image035.gif"  v:shapes="_x0000_i1034"> </sub> </span></p>
  <p align=right style='text-align:right;line-height:18.0pt'><span
lang=EN-US>(2.7)</span></p>
  <p style='line-height:18.0pt'><span
style='font-family:宋体;"Times New Roman"'>有了上面的公式,我们可以把变换分成三步:</span></p>
  <p style='line-height:18.0pt'><span
lang=EN-US>1.</span><span style='font-family:宋体;
&quot;Times New Roman&quot;'>将坐标系</span><span lang=EN-US>o’</span><span
style='font-family:宋体;"Times New Roman"'>变成</span><span lang=EN-US>o</span><span style='font-family:
宋体;&quot;Times New Roman&quot;'>;</span></p>
  <p style='line-height:18.0pt'><span
lang=EN-US>2.</span><span style='font-family:宋体;
&quot;Times New Roman&quot;'>将该点顺时针旋转</span><span lang=EN-US>a</span><span
style='font-family:宋体;"Times New Roman"'>角;</span></p>
  <p style='line-height:18.0pt'><span
lang=EN-US>3.</span><span style='font-family:宋体;
&quot;Times New Roman&quot;'>将坐标系</span><span lang=EN-US>o</span><span
style='font-family:宋体;"Times New Roman"'>变回</span><span lang=EN-US>o’</span><span style='font-family:
宋体;&quot;Times New Roman&quot;'>,这样,我们就得到了变换矩阵,是上面三个矩阵的级联。</span></p>
  <p align=center style='text-align:center;line-height:18.0pt'><span
lang=EN-US><sub> <img width=529 height=125
src="chap02.files/image037.gif"  v:shapes="_x0000_i1040"> </sub> </span></p>
  <p align=right style='text-align:right;line-height:18.0pt'><span
lang=EN-US>(2.8)</span></p>
  <p style='line-height:18.0pt'><span
style='font-family:宋体;"Times New Roman"'>要注意的是,因为新图变大,所以上面公式中出现了</span><span lang=EN-US>w<sub>old</sub></span><span
style='font-family:宋体;"Times New Roman"'>,</span><span lang=EN-US>h<sub>old</sub></span><span
style='font-family:宋体;"Times New Roman"'>,</span><span lang=EN-US>w<sub>new</sub></span><span
style='font-family:宋体;"Times New Roman"'>,</span><span lang=EN-US>h<sub>new</sub></span><span
style='font-family:宋体;"Times New Roman"'>,它们分别表示原图</span><span lang=EN-US>(old)</span><span
style='font-family:宋体;"Times New Roman"'>和新图</span><span lang=EN-US>(new)</span><span
style='font-family:宋体;"Times New Roman"'>的宽、高。我们从图</span><span lang=EN-US>2.8</span><span
style='font-family:宋体;"Times New Roman"'>中容易看出:</span><span lang=EN-US>w<sub>new</sub>=max(|x<sub>4</sub>-x<sub>1</sub>|,|x<sub>3</sub>-x<sub>2</sub>|)   
    </span><span style='font-family:宋体;
&quot;Times New Roman&quot;'>;</span><span lang=EN-US>h<sub>new</sub>=max(|y<sub>4</sub>-y<sub>1</sub>|,|y<sub>3</sub>-y<sub>2</sub>|)</span><span
style='font-family:宋体;"Times New Roman"'>。</span></p>
  <p style='line-height:18.0pt'><span
lang=EN-US>(2.8)</span><span style='font-family:宋体;
&quot;Times New Roman&quot;'>的逆变换为</span></p>
  <p align=center style='text-align:center;line-height:18.0pt'><span
lang=EN-US><sub> <img width=526 height=125
src="chap02.files/image039.gif"  v:shapes="_x0000_i1035"> </sub> </span></p>
  <p align=right style='text-align:right;line-height:18.0pt'><span
lang=EN-US>(2.9)</span></p>
  <p style='line-height:18.0pt'><span
style='font-family:宋体;"Times New Roman"'>这样,对于新图中的每一点,我们就可以根据公式</span><span lang=EN-US>(2.9)</span><span
style='font-family:宋体;"Times New Roman"'>求出对应原图中的点,得到它的灰度。如果超出原图范围,则填成白色。要注意的是,由于有浮点运算,计算出来点的坐标可能不是整数,采用取整处理,即找最接近的点,这样会带来一些误差</span><span
lang=EN-US>(</span><span style='font-family:宋体;
&quot;Times New Roman&quot;'>图象可能会出现锯齿</span><span lang=EN-US>)</span><span
style='font-family:宋体;"Times New Roman"'>。更精确的方法是采用插值,将在图象缩放时介绍。</span></p>
  <p style='line-height:18.0pt'><span
style='font-family:宋体;"Times New Roman"'>源程序如下:</span></p>
  <p style='line-height:18.0pt'><span lang=EN-US>#define PI 3.1415926535</span></p>  
  <p style='line-height:18.0pt'><span lang=EN-US>#define RADIAN(angle) ((angle)*PI/180.0) 
    //</span><span style='font-family:宋体;
&quot;Times New Roman&quot;'>角度到弧度转化的宏</span></p>
  <p style='line-height:18.0pt'><span lang=EN-US>BOOL Rotation(HWND hWnd)</span></p>  
  <p style='line-height:18.0pt'><span lang=EN-US>{</span></p>
  <p style='line-height:18.0pt'>DLGPROC&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;   
    dlgInputBox = NULL;</p>  
  <p style='line-height:18.0pt'>DWORD&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;   
    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;   
    OffBits,SrcBufSize,DstBufSize,DstLineBytes;</p>
  <p style='line-height:18.0pt'>LPBITMAPINFOHEADER&nbsp;&nbsp; lpImgData;</p>  
  <p style='line-height:18.0pt'>LPSTR&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;   
    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;   
    lpPtr;</p>
  <p style='line-height:18.0pt'>HLOCAL&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;   
    hTempImgData;</p>
  <p style='line-height:18.0pt'>LPBITMAPINFOHEADER&nbsp;&nbsp; lpTempImgData;</p>  
  <p style='line-height:18.0pt'>LPSTR&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;   
    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;   
    lpTempPtr;</p>
  <p style='line-height:18.0pt'>float&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;   
    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;   
    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; SrcX1,SrcY1,SrcX2,SrcY2;</p>  
  <p style='line-height:18.0pt'>float&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;   
    SrcX3,SrcY3,SrcX4,SrcY4;</p>
  <p style='line-height:18.0pt'>float&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;   
    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;   
    DstX1,DstY1,DstX2,DstY2;</p>
  <p style='line-height:18.0pt'>float&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;   
    DstX3,DstY3,DstX4,DstY4;</p>
  <p style='line-height:18.0pt'>DWORD&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;   
    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Wold,Hold,Wnew,Hnew;</p>  
  <p style='line-height:18.0pt'>HDC&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nb

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -