📄 lms.m
字号:
clear,clc
m=8; % sensors
n=2; % sources
theta=[-20 0]; % in angle
d=1/2; % 1/2 lambada
N=500; % samples
L=100; % resolution in [-90' 90']
Meann=0; % mean of noise
varn=1; % variance of noise
SNR=10; % signal-to-noise ratio
INR=10; % interference-to-noise ratio
rvar1=sqrt(varn) * 10^(SNR/20); % variance of signal
rvar2=sqrt(varn) * 10^(INR/20); % variance of interference
% generate the source signals
s=[rvar1*exp(j*2*pi*50*0.001*[0:N-1])
rvar2*exp(j*2*pi*(100*0.001*[0:N-1]+rand))];
% generate the A matrix
A=exp(-j*2*pi*d*[0:m-1].'*sin(theta*pi/180));
% generate the noise component
e=sqrt(varn/2)*(randn(m,N)+j*randn(m,N));
% generate the ULA data
Y=A*s+e;
% initialize weight matrix and associated parameters for LMS predictor
de =s(1, :);
mu=1e-3;
w = zeros(m, 1);
for k = 1:N
% predict next sample and error
y(k) = w'*Y(:, k);
e(k) = de(k) - y(k);
% adapt weight matrix and step size
w = w + mu * Y(:,k)*conj(e(k));
end
% beamforming using the LMS method
beam=zeros(1,L);
for i = 1 : L
a=exp(-j*2*pi*d*[0:m-1].'*sin(-pi/2 + pi*(i-1)/L));
beam(i)=20*log10(abs(w'*a));
end
% plotting command followed
figure
angle=-90:180/L:(90-180/L);
plot(angle,beam);
xlabel('angle');
ylabel('幅度响应/dB');
figure
for k = 1:N
en(k)=(abs(e(k))).^2;
end
semilogy(en);
xlabel('n');
ylabel('e^{2}(n)');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -