⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 featureselector.java

📁 常用机器学习算法,java编写源代码,内含常用分类算法,包括说明文档
💻 JAVA
字号:
/* Copyright (C) 2002 Univ. of Massachusetts Amherst, Computer Science Dept.   This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).   http://www.cs.umass.edu/~mccallum/mallet   This software is provided under the terms of the Common Public License,   version 1.0, as published by http://www.opensource.org.  For further   information, see the file `LICENSE' included with this distribution. *//**	 Given an arbitrary scheme for ranking features, set of feature selection of	 an InstanceList.   @author Andrew McCallum <a href="mailto:mccallum@cs.umass.edu">mccallum@cs.umass.edu</a> */package edu.umass.cs.mallet.base.types;import edu.umass.cs.mallet.base.util.MalletLogger;import java.util.logging.*;public class FeatureSelector{	private static Logger logger = MalletLogger.getLogger(FeatureSelector.class.getName());	// Only one of the following two will be non-null	RankedFeatureVector.Factory ranker;	RankedFeatureVector.PerLabelFactory perLabelRanker;	// Only one of the following two will be changed	int numFeatures = -1;	double minThreshold = Double.POSITIVE_INFINITY;	// Not yet used	public FeatureSelector (RankedFeatureVector.Factory ranker,													int numFeatures)	{		this.ranker = ranker;		this.numFeatures = numFeatures;	}	public FeatureSelector (RankedFeatureVector.Factory ranker,													double minThreshold)	{		this.ranker = ranker;		this.minThreshold = minThreshold;	}		public FeatureSelector (RankedFeatureVector.PerLabelFactory perLabelRanker,													int numFeatures)	{		this.perLabelRanker = perLabelRanker;		this.numFeatures = numFeatures;	}	public FeatureSelector (RankedFeatureVector.PerLabelFactory perLabelRanker,													double minThreshold)	{		this.perLabelRanker = perLabelRanker;		this.minThreshold = minThreshold;	}		public void selectFeaturesFor (InstanceList ilist, InstanceList validationList)	{		if (perLabelRanker != null)			selectFeaturesForPerLabel (ilist, validationList);		else			selectFeaturesForAllLabels (ilist, validationList);	}	public void selectFeaturesForAllLabels (InstanceList ilist, InstanceList validationList)			{		RankedFeatureVector ranking = ranker.newRankedFeatureVector (ilist);		FeatureSelection fs = new FeatureSelection (ilist.getDataAlphabet());		int nf = Math.min (numFeatures, ranking.singleSize());		for (int i = 0; i < nf; i++) {			logger.info ("adding feature "+i+" word="+ilist.getDataAlphabet().lookupObject(ranking.getIndexAtRank(i)));			fs.add (ranking.getIndexAtRank(i));		}		ilist.setPerLabelFeatureSelection (null);		ilist.setFeatureSelection (fs);	}	public void selectFeaturesForPerLabel (InstanceList ilist, InstanceList validationList)	{		RankedFeatureVector[] rankings = perLabelRanker.newRankedFeatureVectors (ilist);		int numClasses = rankings.length;		FeatureSelection[] fs = new FeatureSelection[numClasses];		for (int i = 0; i < numClasses; i++) {			fs[i] = new FeatureSelection (ilist.getDataAlphabet());			RankedFeatureVector ranking = rankings[i];			int nf = Math.min (numFeatures, ranking.singleSize());			if (nf >= 0) {				for (int j = 0; j < nf; j++)					fs[i].add (ranking.getIndexAtRank(j));			} else {				for (int j = 0; j < ranking.singleSize(); j++) {					if (ranking.getValueAtRank(j) > minThreshold)						fs[i].add (ranking.getIndexAtRank(j));					else						break;				}			}		}		ilist.setFeatureSelection (null);		ilist.setPerLabelFeatureSelection (fs);	}	}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -