⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 decisiontreetrainer.java

📁 常用机器学习算法,java编写源代码,内含常用分类算法,包括说明文档
💻 JAVA
字号:
/* Copyright (C) 2002 Univ. of Massachusetts Amherst, Computer Science Dept.   This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).   http://www.cs.umass.edu/~mccallum/mallet   This software is provided under the terms of the Common Public License,   version 1.0, as published by http://www.opensource.org.  For further   information, see the file `LICENSE' included with this distribution. */package edu.umass.cs.mallet.base.classify;import edu.umass.cs.mallet.base.classify.Classifier;import edu.umass.cs.mallet.base.types.Instance;import edu.umass.cs.mallet.base.types.InstanceList;import edu.umass.cs.mallet.base.types.Instance;import edu.umass.cs.mallet.base.types.Alphabet;import edu.umass.cs.mallet.base.types.FeatureVector;import edu.umass.cs.mallet.base.types.Labeling;import edu.umass.cs.mallet.base.types.LabelVector;import edu.umass.cs.mallet.base.types.Multinomial;import edu.umass.cs.mallet.base.types.FeatureSelection;import edu.umass.cs.mallet.base.util.MalletLogger;import edu.umass.cs.mallet.base.pipe.Pipe;import java.util.logging.*;/**	 A decision tree learner, roughly ID3.	 Does not yet implement splitting of continuous-valued features, but	 it should in the future.  Currently a feature is considered	 "present" if it has positive value.	 ftp://ftp.cs.cmu.edu/project/jair/volume4/quinlan96a.ps	 Only set up for conventiently learning decision stubs:  there is no pruning or	 good stopping rule.  Currently only stop by reaching a maximum depth.   @author Andrew McCallum <a href="mailto:mccallum@cs.umass.edu">mccallum@cs.umass.edu</a> */public class DecisionTreeTrainer extends ClassifierTrainer implements Boostable{	private static Logger logger = MalletLogger.getLogger(DecisionTreeTrainer.class.getName());	int maxDepth = 5;	int maxNumNodes = 99999;							// ignored for now	double minInfoGainSplit = 0.001;		public DecisionTreeTrainer (int maxDepth)	{		this.maxDepth = maxDepth;	}	public DecisionTreeTrainer ()	{		this(4);	}	protected void splitTree (DecisionTree.Node node, FeatureSelection selectedFeatures, int depth)	{		if (depth == maxDepth || node.getSplitInfoGain() < minInfoGainSplit)			return;		logger.info("Splitting feature \""+node.getSplitFeature()												+"\" infogain="+node.getSplitInfoGain());		node.split(selectedFeatures);		splitTree (node.getFeaturePresentChild(), selectedFeatures, depth+1);		splitTree (node.getFeatureAbsentChild(), selectedFeatures, depth+1);	}	public Classifier train (InstanceList trainingList,													 InstanceList validationList,													 InstanceList testSet,													 ClassifierEvaluating evaluator,													 Classifier initialClassifier)	{		FeatureSelection selectedFeatures = trainingList.getFeatureSelection();		DecisionTree.Node root = new DecisionTree.Node (trainingList, null, selectedFeatures);		splitTree (root, selectedFeatures, 0);		root.stopGrowth();		System.out.println ("DecisionTree learned:");		root.print();		return new DecisionTree (trainingList.getPipe(), root);	}		}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -