⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 winnow.java

📁 常用机器学习算法,java编写源代码,内含常用分类算法,包括说明文档
💻 JAVA
字号:
/* Copyright (C) 2002 Univ. of Massachusetts Amherst, Computer Science Dept.   This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).   http://www.cs.umass.edu/~mccallum/mallet   This software is provided under the terms of the Common Public License,   version 1.0, as published by http://www.opensource.org.  For further   information, see the file `LICENSE' included with this distribution. *//**    @author Aron Culotta <a href="mailto:culotta@cs.umass.edu">culotta@cs.umass.edu</a> */package edu.umass.cs.mallet.base.classify;import edu.umass.cs.mallet.base.classify.Classifier;import edu.umass.cs.mallet.base.types.Instance;import edu.umass.cs.mallet.base.types.Instance;import edu.umass.cs.mallet.base.types.Alphabet;import edu.umass.cs.mallet.base.types.FeatureVector;import edu.umass.cs.mallet.base.types.Labeling;import edu.umass.cs.mallet.base.types.LabelVector;import edu.umass.cs.mallet.base.types.Multinomial;import edu.umass.cs.mallet.base.pipe.Pipe;/**  * Classification methods of Winnow2 algorithm. * @see WinnowTrainer */public class Winnow extends Classifier{	/**	 *array of weights, one for each feature, initialized to 1	 */	double [][] weights;	/**	 *threshold for sum of wi*xi in formulating guess 	 */	double theta;		/**	 * Passes along data pipe and weights from 	 * {@link #WinnowTrainer WinnowTrainer}	 * @param dataPipe needed for dictionary, labels, feature vectors, etc	 * @param newWeights weights calculated during training phase	 * @param theta value used for threshold	 * @param idim i dimension of weights array	 * @param jdim j dimension of weights array	 */	public Winnow (Pipe dataPipe,								 double [][]newWeights, double theta, 								 int idim, int jdim){		super (dataPipe);		this.theta = theta;		this.weights = new double[idim][jdim];		for(int i=0; i<idim; i++)	    for(int j=0; j<jdim; j++)				this.weights[i][j] = newWeights[i][j];	}		/**	 * Classifies an instance using Winnow's weights	 * @param instance an instance to be classified	 * @return an object containing the classifier's guess     */	public Classification classify (Instance instance){		int numClasses = getLabelAlphabet().size();		double[] scores = new double[numClasses];		FeatureVector fv = (FeatureVector) instance.getData (this.instancePipe);		// Make sure the feature vector's feature dictionary matches		// what we are expecting from our data pipe (and thus our notion		// of feature probabilities.		assert (fv.getAlphabet ()						== this.instancePipe.getDataAlphabet ());		int fvisize = fv.numLocations();				// Set the scores by summing wi*xi		for (int fvi = 0; fvi < fvisize; fvi++) {			int fi = fv.indexAtLocation (fvi);			for (int ci = 0; ci < numClasses; ci++)		    scores[ci] += this.weights[ci][fi];		}						// Create and return a Classification object		return new Classification (instance, this,															 new LabelVector (getLabelAlphabet(),																								scores));	}		}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -