📄 adaboost.java
字号:
/* Copyright (C) 2002 Univ. of Massachusetts Amherst, Computer Science Dept. This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit). http://www.cs.umass.edu/~mccallum/mallet This software is provided under the terms of the Common Public License, version 1.0, as published by http://www.opensource.org. For further information, see the file `LICENSE' included with this distribution. */package edu.umass.cs.mallet.base.classify;import edu.umass.cs.mallet.base.pipe.*;import edu.umass.cs.mallet.base.types.*;/** AdaBoost Robert E. Schapire. "The boosting approach to machine learning: An overview." In MSRI Workshop on Nonlinear Estimation and Classification, 2002. http://www.research.att.com/~schapire/cgi-bin/uncompress-papers/msri.ps @author Andrew McCallum <a href="mailto:mccallum@cs.umass.edu">mccallum@cs.umass.edu</a> */public class AdaBoost extends Classifier{ Classifier[] weakClassifiers; double[] alphas; public AdaBoost (Pipe instancePipe, Classifier[] weakClassifiers, double[] alphas) { super (instancePipe); this.weakClassifiers = weakClassifiers; this.alphas = alphas; } // added by Gary /** * Get the number of weak classifiers in this ensemble classifier */ public int getNumWeakClassifiers() { return alphas.length; } // added by Gary /** * Return an AdaBoost classifier that uses only the first * <tt>numWeakClassifiersToUse</tt> weak learners. * * <p>The returned classifier's Pipe and weak classifiers * are backed by the respective objects of this classifier, * so changes to the returned classifier's Pipe and weak * classifiers are reflected in this classifier, and vice versa. */ public AdaBoost getTrimmedClassifier(int numWeakClassifiersToUse) { if (numWeakClassifiersToUse <= 0 || numWeakClassifiersToUse > weakClassifiers.length) throw new IllegalArgumentException("number of weak learners to use out of range:" + numWeakClassifiersToUse); Classifier[] newWeakClassifiers = new Classifier[numWeakClassifiersToUse]; System.arraycopy(weakClassifiers, 0, newWeakClassifiers, 0, numWeakClassifiersToUse); double[] newAlphas = new double[numWeakClassifiersToUse]; System.arraycopy(alphas, 0, newAlphas, 0, numWeakClassifiersToUse); return new AdaBoost(instancePipe, newWeakClassifiers, newAlphas); } public Classification classify (Instance inst) { return classify(inst, weakClassifiers.length); } /** * Classify the given instance using only the first * <tt>numWeakClassifiersToUse</tt> classifiers * trained during boosting */ public Classification classify (Instance inst, int numWeakClassifiersToUse) { if (numWeakClassifiersToUse <= 0 || numWeakClassifiersToUse > weakClassifiers.length) throw new IllegalArgumentException("number of weak learners to use out of range:" + numWeakClassifiersToUse); int numClasses = getLabelAlphabet().size(); double[] scores = new double[numClasses]; int bestIndex; double sum = 0; // Gather scores of all weakClassifiers for (int round = 0; round < numWeakClassifiersToUse; round++) { bestIndex = weakClassifiers[round].classify(inst).getLabeling().getBestIndex(); scores[bestIndex] += alphas[round]; sum += scores[bestIndex]; } // Normalize the scores for (int i = 0; i < scores.length; i++) scores[i] /= sum; return new Classification (inst, this, new LabelVector (getLabelAlphabet(), scores)); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -