📄 testclassifiers.java
字号:
/* Copyright (C) 2002 Univ. of Massachusetts Amherst, Computer Science Dept. This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit). http://www.cs.umass.edu/~mccallum/mallet This software is provided under the terms of the Common Public License, version 1.0, as published by http://www.opensource.org. For further information, see the file `LICENSE' included with this distribution. *//** @author Andrew McCallum <a href="mailto:mccallum@cs.umass.edu">mccallum@cs.umass.edu</a> */package edu.umass.cs.mallet.base.classify.tests;import edu.umass.cs.mallet.base.types.*;import edu.umass.cs.mallet.base.classify.*;import edu.umass.cs.mallet.base.pipe.*;import edu.umass.cs.mallet.base.util.*;//import edu.umass.cs.mallet.base.pipe.SerialPipe;import edu.umass.cs.mallet.base.pipe.iterator.ArrayIterator;import junit.framework.*;import java.net.URI;public class TestClassifiers extends TestCase{ public TestClassifiers (String name) { super (name); } private static Alphabet dictOfSize (int size) { Alphabet ret = new Alphabet (); for (int i = 0; i < size; i++) ret.lookupIndex ("feature"+i); return ret; } public void testRandomTrained () { ClassifierTrainer[] trainers = new ClassifierTrainer[3]; trainers[0] = new NaiveBayesTrainer(); trainers[1] = new MaxEntTrainer(); trainers[2] = new DecisionTreeTrainer(); Alphabet fd = dictOfSize (3); String[] classNames = new String[] {"class0", "class1", "class2"}; InstanceList ilist = new InstanceList (new Random(1), fd, classNames, 200); InstanceList lists[] = ilist.split (new java.util.Random(2), new double[] {.5, .5}); //System.out.println ("Training set size = "+lists[0].size()); //System.out.println ("Testing set size = "+lists[1].size()); Classifier[] classifiers = new Classifier[trainers.length]; for (int i = 0; i < trainers.length; i++) classifiers[i] = trainers[i].train (lists[0]); System.out.println ("Accuracy on training set:"); for (int i = 0; i < trainers.length; i++) System.out.println (classifiers[i].getClass().getName() + ": " + new Trial (classifiers[i], lists[0]).accuracy()); System.out.println ("Accuracy on testing set:"); for (int i = 0; i < trainers.length; i++) System.out.println (classifiers[i].getClass().getName() + ": " + new Trial (classifiers[i], lists[1]).accuracy()); } public static Test suite () { return new TestSuite (TestClassifiers.class); } protected void setUp () { } public static void main (String[] args) { junit.textui.TestRunner.run (suite()); } }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -