⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 confidencepredictingclassifiertrainer.java

📁 常用机器学习算法,java编写源代码,内含常用分类算法,包括说明文档
💻 JAVA
字号:
/* Copyright (C) 2002 Univ. of Massachusetts Amherst, Computer Science Dept.   This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).   http://www.cs.umass.edu/~mccallum/mallet   This software is provided under the terms of the Common Public License,   version 1.0, as published by http://www.opensource.org.  For further   information, see the file `LICENSE' included with this distribution. *//**    @author Andrew McCallum <a href="mailto:mccallum@cs.umass.edu">mccallum@cs.umass.edu</a> */package edu.umass.cs.mallet.base.classify;import edu.umass.cs.mallet.base.types.*;import edu.umass.cs.mallet.base.classify.evaluate.*;import edu.umass.cs.mallet.base.pipe.Pipe;import edu.umass.cs.mallet.base.pipe.Classification2ConfidencePredictingFeatureVector;import edu.umass.cs.mallet.base.util.MalletLogger;import edu.umass.cs.mallet.base.util.PropertyList;import java.util.ArrayList;import java.util.logging.*;public class ConfidencePredictingClassifierTrainer extends ClassifierTrainer implements Boostable{	private static Logger logger =	MalletLogger.getLogger(ConfidencePredictingClassifierTrainer.class.getName());		ClassifierTrainer underlyingClassifierTrainer;	MaxEntTrainer confidencePredictingClassifierTrainer;	//DecisionTreeTrainer confidencePredictingClassifierTrainer;	//NaiveBayesTrainer confidencePredictingClassifierTrainer;	Pipe confidencePredictingPipe;	static ConfusionMatrix confusionMatrix = null;		public ConfidencePredictingClassifierTrainer (ClassifierTrainer underlyingClassifierTrainer,																								Pipe confidencePredictingPipe)	{		this.confidencePredictingPipe = confidencePredictingPipe;		this.confidencePredictingClassifierTrainer = new MaxEntTrainer();		//this.confidencePredictingClassifierTrainer = new DecisionTreeTrainer();		//this.confidencePredictingClassifierTrainer = new NaiveBayesTrainer();		this.underlyingClassifierTrainer = underlyingClassifierTrainer;	} 	public ConfidencePredictingClassifierTrainer (ClassifierTrainer underlyingClassifierTrainer)	{		this (underlyingClassifierTrainer, new Classification2ConfidencePredictingFeatureVector());	}		public Classifier train (InstanceList trainList,													 InstanceList validationList,													 InstanceList testSet,													 ClassifierEvaluating evaluator,													 Classifier initialClassifier)	{		FeatureSelection selectedFeatures = trainList.getFeatureSelection();		logger.fine ("Training underlying classifier");		Classifier c = underlyingClassifierTrainer.train (trainList, null, null, null, initialClassifier);		confusionMatrix = new ConfusionMatrix(new Trial(c, trainList));				Trial t = new Trial (c, validationList);		double accuracy = t.accuracy();		InstanceList confidencePredictionTraining = new InstanceList (confidencePredictingPipe);		logger.fine ("Creating confidence prediction instance list");		double weight;		for (int i = 0; i < t.size(); i++) {			Classification classification = t.getClassification(i);			confidencePredictionTraining.add (classification, null, classification.getInstance().getName(), classification.getInstance().getSource());					}				logger.info("Begin training ConfidencePredictingClassifier . . . ");		Classifier cpc = confidencePredictingClassifierTrainer.train (confidencePredictionTraining);		logger.info("Accuracy at predicting correct/incorrect in training = " + cpc.getAccuracy(confidencePredictionTraining));		// get most informative features per class, then combine to make		// new feature conjunctions		PerLabelInfoGain perLabelInfoGain = new PerLabelInfoGain (trainList);		/*		AdaBoostTrainer adaTrainer = new AdaBoostTrainer (confidencePredictingClassifierTrainer, 10);			Classifier ada = adaTrainer.train (confidencePredictionTraining);			System.out.println ("Accuracy at predicting correct/incorrect in BOOSTING training = " + ada.getAccuracy(confidencePredictionTraining));*/		// print out most informative features/*		InfoGain ig = new InfoGain (confidencePredictionTraining);		for (int i = 0; i < ig.numLocations(); i++)		logger.info ("InfoGain["+ig.getObjectAtRank(i)+"]="+ig.getValueAtRank(i));*/		return new ConfidencePredictingClassifier (c, cpc);//		return new ConfidencePredictingClassifier (c, ada);	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -