📄 confidencepredictingclassifiertrainer.java
字号:
/* Copyright (C) 2002 Univ. of Massachusetts Amherst, Computer Science Dept. This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit). http://www.cs.umass.edu/~mccallum/mallet This software is provided under the terms of the Common Public License, version 1.0, as published by http://www.opensource.org. For further information, see the file `LICENSE' included with this distribution. *//** @author Andrew McCallum <a href="mailto:mccallum@cs.umass.edu">mccallum@cs.umass.edu</a> */package edu.umass.cs.mallet.base.classify;import edu.umass.cs.mallet.base.types.*;import edu.umass.cs.mallet.base.classify.evaluate.*;import edu.umass.cs.mallet.base.pipe.Pipe;import edu.umass.cs.mallet.base.pipe.Classification2ConfidencePredictingFeatureVector;import edu.umass.cs.mallet.base.util.MalletLogger;import edu.umass.cs.mallet.base.util.PropertyList;import java.util.ArrayList;import java.util.logging.*;public class ConfidencePredictingClassifierTrainer extends ClassifierTrainer implements Boostable{ private static Logger logger = MalletLogger.getLogger(ConfidencePredictingClassifierTrainer.class.getName()); ClassifierTrainer underlyingClassifierTrainer; MaxEntTrainer confidencePredictingClassifierTrainer; //DecisionTreeTrainer confidencePredictingClassifierTrainer; //NaiveBayesTrainer confidencePredictingClassifierTrainer; Pipe confidencePredictingPipe; static ConfusionMatrix confusionMatrix = null; public ConfidencePredictingClassifierTrainer (ClassifierTrainer underlyingClassifierTrainer, Pipe confidencePredictingPipe) { this.confidencePredictingPipe = confidencePredictingPipe; this.confidencePredictingClassifierTrainer = new MaxEntTrainer(); //this.confidencePredictingClassifierTrainer = new DecisionTreeTrainer(); //this.confidencePredictingClassifierTrainer = new NaiveBayesTrainer(); this.underlyingClassifierTrainer = underlyingClassifierTrainer; } public ConfidencePredictingClassifierTrainer (ClassifierTrainer underlyingClassifierTrainer) { this (underlyingClassifierTrainer, new Classification2ConfidencePredictingFeatureVector()); } public Classifier train (InstanceList trainList, InstanceList validationList, InstanceList testSet, ClassifierEvaluating evaluator, Classifier initialClassifier) { FeatureSelection selectedFeatures = trainList.getFeatureSelection(); logger.fine ("Training underlying classifier"); Classifier c = underlyingClassifierTrainer.train (trainList, null, null, null, initialClassifier); confusionMatrix = new ConfusionMatrix(new Trial(c, trainList)); Trial t = new Trial (c, validationList); double accuracy = t.accuracy(); InstanceList confidencePredictionTraining = new InstanceList (confidencePredictingPipe); logger.fine ("Creating confidence prediction instance list"); double weight; for (int i = 0; i < t.size(); i++) { Classification classification = t.getClassification(i); confidencePredictionTraining.add (classification, null, classification.getInstance().getName(), classification.getInstance().getSource()); } logger.info("Begin training ConfidencePredictingClassifier . . . "); Classifier cpc = confidencePredictingClassifierTrainer.train (confidencePredictionTraining); logger.info("Accuracy at predicting correct/incorrect in training = " + cpc.getAccuracy(confidencePredictionTraining)); // get most informative features per class, then combine to make // new feature conjunctions PerLabelInfoGain perLabelInfoGain = new PerLabelInfoGain (trainList); /* AdaBoostTrainer adaTrainer = new AdaBoostTrainer (confidencePredictingClassifierTrainer, 10); Classifier ada = adaTrainer.train (confidencePredictionTraining); System.out.println ("Accuracy at predicting correct/incorrect in BOOSTING training = " + ada.getAccuracy(confidencePredictionTraining));*/ // print out most informative features/* InfoGain ig = new InfoGain (confidencePredictionTraining); for (int i = 0; i < ig.numLocations(); i++) logger.info ("InfoGain["+ig.getObjectAtRank(i)+"]="+ig.getValueAtRank(i));*/ return new ConfidencePredictingClassifier (c, cpc);// return new ConfidencePredictingClassifier (c, ada); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -