⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 perclassaccuracyevaluator.java

📁 常用机器学习算法,java编写源代码,内含常用分类算法,包括说明文档
💻 JAVA
字号:
/* Copyright (C) 2003 Univ. of Massachusetts Amherst, Computer Science Dept.   This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).   http://www.cs.umass.edu/~mccallum/mallet   This software is provided under the terms of the Common Public License,   version 1.0, as published by http://www.opensource.org.  For further   information, see the file `LICENSE' included with this distribution. */package edu.umass.cs.mallet.base.fst;import edu.umass.cs.mallet.base.util.MalletLogger;import edu.umass.cs.mallet.base.types.*;import java.util.logging.Logger;import java.util.Arrays;import java.io.PrintStream;import java.text.DecimalFormat;/** * @author Charles Sutton * @version $Id: PerClassAccuracyEvaluator.java,v 1.3 2004/05/14 18:00:45 casutton Exp $ */public class PerClassAccuracyEvaluator extends TransducerEvaluator {  private static Logger logger = MalletLogger.getLogger(TokenAccuracyEvaluator.class.getName());  public PerClassAccuracyEvaluator(boolean printViterbiPath)  {    viterbiOutput = printViterbiPath;  }  public PerClassAccuracyEvaluator()  {    this(false);  }  public boolean evaluate(Transducer crf, boolean finishedTraining, int iteration,                          boolean converged, double cost,                          InstanceList training, InstanceList validation, InstanceList testing)  {    logger.info("Iteration=" + iteration + " Cost=" + cost);    InstanceList[] lists = new InstanceList[]{training, validation, testing};    String[] listnames = new String[]{"Training", "Validation", "Testing"};    for (int k = 0; k < lists.length; k++)      if (lists[k] != null)        test(crf, lists[k], listnames[k], null);    return true;  }  public void test(Transducer model, InstanceList data, String description,                   PrintStream viterbiOutputStream)  {    Alphabet dict = model.getInputPipe().getTargetAlphabet();    int numLabels = dict.size();    int[] numCorrectTokens = new int [numLabels];    int[] numPredTokens = new int [numLabels];    int[] numTrueTokens = new int [numLabels];    logger.info("Per-token results for " + description);    for (int i = 0; i < data.size(); i++) {      Instance instance = data.getInstance(i);      Sequence input = (Sequence) instance.getData();      Sequence trueOutput = (Sequence) instance.getTarget();      assert (input.size() == trueOutput.size());      Sequence predOutput = model.viterbiPath(input).output();      assert (predOutput.size() == trueOutput.size());      for (int j = 0; j < trueOutput.size(); j++) {        int idx = dict.lookupIndex(trueOutput.get(j));        numTrueTokens[idx]++;        numPredTokens[dict.lookupIndex(predOutput.get(j))]++;        if (trueOutput.get(j).equals(predOutput.get(j)))          numCorrectTokens[idx]++;        if (viterbiOutputStream != null) {          FeatureVector fv = (FeatureVector) input.get(j);          viterbiOutputStream.println(trueOutput.get(j).toString() + '/' + predOutput.get(j).toString() + "  " +                                      fv.toString(true));        }      }    }    DecimalFormat f = new DecimalFormat ("0.####");    double[] allf = new double [numLabels];    for (int i = 0; i < numLabels; i++) {      Object label = dict.lookupObject(i);      double precision = ((double) numCorrectTokens[i]) / numPredTokens[i];      double recall = ((double) numCorrectTokens[i]) / numTrueTokens[i];      double f1 = (2 * precision * recall) / (precision + recall);      if (!Double.isNaN (f1)) allf [i] = f1;      logger.info(description +" label " + label + " P " + f.format (precision)                  + " R " + f.format(recall) + " F1 "+ f.format (f1));    }    logger.info ("Macro-average F1 "+f.format (MatrixOps.mean (allf)));  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -