⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 transducerconfidenceestimator.java

📁 常用机器学习算法,java编写源代码,内含常用分类算法,包括说明文档
💻 JAVA
字号:
/* Copyright (C) 2002 Univ. of Massachusetts Amherst, Computer Science Dept.   This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).   http://www.cs.umass.edu/~mccallum/mallet   This software is provided under the terms of the Common Public License,   version 1.0, as published by http://www.opensource.org.  For further   information, see the file `LICENSE' included with this distribution. *//** 		@author Aron Culotta <a href="mailto:culotta@cs.umass.edu">culotta@cs.umass.edu</a>*/package edu.umass.cs.mallet.base.fst.confidence;import edu.umass.cs.mallet.base.types.*;import edu.umass.cs.mallet.base.util.MalletLogger;import java.util.logging.*;import edu.umass.cs.mallet.base.pipe.iterator.*;import edu.umass.cs.mallet.base.fst.*;import java.util.*;/** * Abstract class that estimates the confidence of a {@link Segment} * extracted by a {@link Transducer}. */abstract public class TransducerConfidenceEstimator{	private static Logger logger = MalletLogger.getLogger(TransducerConfidenceEstimator.class.getName());	Transducer model; // the trained Transducer which performed the										// extractions	java.util.Vector segmentConfidences; 	/**		 Calculates the confidence in the tagging of a {@link Segment}.	 */	abstract public double estimateConfidenceFor (Segment segment);	public java.util.Vector getSegmentConfidences () {return this.segmentConfidences;}	/**		 Ranks all {@link Segment}s in this {@link InstanceList} by		 confidence estimate.		 @param ilist list of segmentation instances		 @param startTags represent the labels for the start states (B-)		 of all segments		 @param continueTags represent the labels for the continue state		 (I-) of all segments		 @return array of {@link Segment}s ordered by non-decreasing		 confidence scores, as calculated by <code>estimateConfidenceFor</code>	 */	public Segment[] rankSegmentsByConfidence (InstanceList ilist, Object[] startTags,																						 Object[] continueTags) {		ArrayList segmentList = new ArrayList ();		SegmentIterator iter = new SegmentIterator (this.model, ilist, startTags, continueTags);					if (this.segmentConfidences == null)			segmentConfidences = new java.util.Vector ();		while (iter.hasNext ()) {			Segment segment = (Segment) iter.nextSegment ();			double confidence = estimateConfidenceFor (segment);			segment.setConfidence (confidence);			logger.info ("confidence=" + segment.getConfidence() + " for segment\n"									 + segment.sequenceToString() + "\n");			segmentList.add (segment);		}		Collections.sort (segmentList);		Segment[] ret = new Segment[1];		ret = (Segment[]) segmentList.toArray (ret);		return ret;	}	/**		 ranks the segments in one {@link Instance}		 @param instance instances to be segmented		 @param startTags represent the labels for the start states (e.g. B-)		 of all segments		 @param continueTags represent the labels for the continue state		 (e.g. I-) of all segments		 @return array of {@link Segment}s ordered by non-decreasing		 confidence scores, as calculated by <code>estimateConfidenceFor</code>	 */	public Segment[] rankSegmentsByConfidence (Instance instance, Object[] startTags,																						 Object[] continueTags) {		InstanceList ilist = new InstanceList (instance.getPipe ());		ilist.add (instance);		return rankSegmentsByConfidence (ilist, startTags, continueTags);	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -