⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tokenaccuracyevaluator.java

📁 常用机器学习算法,java编写源代码,内含常用分类算法,包括说明文档
💻 JAVA
字号:
/* Copyright (C) 2002 Univ. of Massachusetts Amherst, Computer Science Dept.   This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).   http://www.cs.umass.edu/~mccallum/mallet   This software is provided under the terms of the Common Public License,   version 1.0, as published by http://www.opensource.org.  For further   information, see the file `LICENSE' included with this distribution. *//**    @author Andrew McCallum <a href="mailto:mccallum@cs.umass.edu">mccallum@cs.umass.edu</a> */package edu.umass.cs.mallet.base.fst;import edu.umass.cs.mallet.base.types.*;import edu.umass.cs.mallet.base.util.MalletLogger;import java.util.logging.*;import java.io.*;public class TokenAccuracyEvaluator extends TransducerEvaluator{	private static Logger logger = MalletLogger.getLogger(TokenAccuracyEvaluator.class.getName());	public TokenAccuracyEvaluator (boolean printViterbiPath)	{		viterbiOutput = printViterbiPath;	}	public TokenAccuracyEvaluator ()	{		this (false);	}		public boolean evaluate (Transducer crf, boolean finishedTraining, int iteration,													 boolean converged, double cost,													 InstanceList training, InstanceList validation, InstanceList testing)	{		logger.info ("Iteration="+iteration+" Cost="+cost);    if (shouldDoEvaluate(iteration, finishedTraining)) {  		InstanceList[] lists = new InstanceList[] {training, validation, testing};	  	String[] listnames = new String[] {"Training", "Validation", "Testing"};		  for (int k = 0; k < lists.length; k++)			  if (lists[k] != null)          test(crf, lists[k], listnames[k], null);    }		return true;	}  public void test(Transducer model, InstanceList data, String description,                   PrintStream viterbiOutputStream)  {		int numCorrectTokens;		int totalTokens;    totalTokens = numCorrectTokens = 0;    logger.info ("Results for "+description);    for (int i = 0; i < data.size(); i++) {      Instance instance = data.getInstance(i);      Sequence input = (Sequence) instance.getData();      Sequence trueOutput = (Sequence) instance.getTarget();      assert (input.size() == trueOutput.size());      Sequence predOutput = model.viterbiPath(input).output();      assert (predOutput.size() == trueOutput.size());      for (int j = 0; j < trueOutput.size(); j++) {        totalTokens++;        if (trueOutput.get(j).equals(predOutput.get(j)))          numCorrectTokens++;        if (viterbiOutputStream != null) {					Object f = input.get(j);          viterbiOutputStream.println(trueOutput.get(j).toString()+'/'+predOutput.get(j).toString()+"  "+           f.toString());        }      }    }			logger.info (description +" accuracy="+((double)numCorrectTokens)/totalTokens);  }	}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -