📄 jcarith.c
字号:
/* This programe is reedited by Fujian Shi(fieagle@yahoo.com.cn) *from the code programmed by Guido Vollbeding <guivol@esc.de>. * jcarith.c * * It can only acomplesh simple arithmetic coding. */#include "commondecls.h"#define RIGHT_SHIFT(x,shft) x>=0 ? x>>shft : -((-x)>>shft)/* We use a compact representation with 1 byte per statistics bin, * thus the numbers directly represent byte sizes. * This 1 byte per statistics bin contains the meaning of the MPS * (more probable symbol) in the highest bit (mask 0x80), and the * index into the probability estimation state machine table * in the lower bits (mask 0x7F). *//* NOTE: Uncomment the following #define if you want to use the * given formula for calculating the AC conditioning parameter Kx * for spectral selection progressive coding in section G.1.3.2 * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4). * Although the spec and P&M authors claim that this "has proven * to give good results for 8 bit precision samples", I'm not * convinced yet that this is really beneficial. * Early tests gave only very marginal compression enhancements * (a few - around 5 or so - bytes even for very large files), * which would turn out rather negative if we'd suppress the * DAC (Define Arithmetic Conditioning) marker segments for * the default parameters in the future. * Note that currently the marker writing module emits 12-byte * DAC segments for a full-component scan in a color image. * This is not worth worrying about IMHO. However, since the * spec defines the default values to be used if the tables * are omitted (unlike Huffman tables, which are required * anyway), one might optimize this behaviour in the future, * and then it would be disadvantageous to use custom tables if * they don't provide sufficient gain to exceed the DAC size. * * On the other hand, I'd consider it as a reasonable result * that the conditioning has no significant influence on the * compression performance. This means that the basic * statistical model is already rather stable. * * Thus, at the moment, we use the default conditioning values * anyway, and do not use the custom formula. * * IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. * We assume that int right shift is unsigned if INT32 right shift is, * which should be safe. *//* * Finish up at the end of an arithmetic-compressed scan. */voidflush_bits (j_compress_ptr cinfo){ arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; INT32 temp; /* Section D.1.8: Termination of encoding */ /* Find the e->c in the coding interval with the largest * number of trailing zero bits */ if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c) e->c = temp + 0x8000L; else e->c = temp; /* Send remaining bytes to output */ e->c <<= e->ct; if (e->c & 0xF8000000L) { /* One final overflow has to be handled */ if (e->buffer >= 0) { if (e->zc) do emit_byte(cinfo,0x00); while (--e->zc); emit_byte(cinfo,e->buffer + 1); if (e->buffer + 1 == 0xFF) emit_byte(cinfo,0x00); } e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ e->sc = 0; } else { if (e->buffer == 0) ++e->zc; else if (e->buffer >= 0) { if (e->zc) do emit_byte(cinfo,0x00); while (--e->zc); emit_byte(cinfo,e->buffer); } if (e->sc) { if (e->zc) do emit_byte(cinfo,0x00); while (--e->zc); do { emit_byte(cinfo,0xFF); emit_byte(cinfo,0x00); } while (--e->sc); } } /* Output final bytes only if they are not 0x00 */ if (e->c & 0x7FFF800L) { if (e->zc) /* output final pending zero bytes */ do emit_byte(cinfo,0x00); while (--e->zc); emit_byte(cinfo,(e->c >> 19) & 0xFF); if (((e->c >> 19) & 0xFF) == 0xFF) emit_byte(cinfo,0x00); if (e->c & 0x7F800L) { emit_byte(cinfo,(e->c >> 11) & 0xFF); if (((e->c >> 11) & 0xFF) == 0xFF) emit_byte(cinfo,0x00); } }}/* * The core arithmetic encoding routine (common in JPEG and JBIG). * This needs to go as fast as possible. * Machine-dependent optimization facilities * are not utilized in this portable implementation. * However, this code should be fairly efficient and * may be a good base for further optimizations anyway. * * Parameter 'val' to be encoded may be 0 or 1 (binary decision). * * Note: I've added full "Pacman" termination support to the * byte output routines, which is equivalent to the optional * Discard_final_zeros procedure (Figure D.15) in the spec. * Thus, we always produce the shortest possible output * stream compliant to the spec (no trailing zero bytes, * except for FF stuffing). * * I've also introduced a new scheme for accessing * the probability estimation state machine table, * derived from Markus Kuhn's JBIG implementation. */voidarith_encode (j_compress_ptr cinfo, unsigned char *st, int val) { extern const INT32 jaritab[]; register arith_entropy_ptr e = cinfo->entropy; register unsigned char nl, nm; register INT32 qe, temp; register int sv; /* Fetch values from our compact representation of Table D.2: * Qe values and probability estimation state machine */ sv = *st; qe = jaritab[sv & 0x7F]; /* => Qe_Value */ nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ /* Encode & estimation procedures per sections D.1.4 & D.1.5 */ e->a -= qe; if (val != ((sv >> 7) & (0x00000001))) { /* Encode the less probable symbol */ if (e->a >= qe) { /* If the interval size (qe) for the less probable symbol (LPS) * is larger than the interval size for the MPS, then exchange * the two symbols for coding efficiency, otherwise code the LPS * as usual: */ e->c += e->a; e->a = qe; } *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ } else { /* Encode the more probable symbol */ if (e->a >= 0x8000L) return; /* A >= 0x8000 -> ready, no renormalization required */ if (e->a < qe) { /* If the interval size (qe) for the less probable symbol (LPS) * is larger than the interval size for the MPS, then exchange * the two symbols for coding efficiency: ,it is equal to code * the LPS.*/ e->c += e->a; e->a = qe; } *st = (sv & 0x80) ^ nm ; /* Estimate_after_MPS ,no change of the sense of the MPS*/ } /* Renormalization & data output per section D.1.6 */ do { e->a <<= 1; e->c <<= 1; if (--e->ct == 0) { /* The followning is the byte_out programe.*/ /* Another byte is ready for output */ temp = e->c >> 19; if (temp > 0xFF) { /*Handle overflow over all stacked 0xFF bytes */ if (e->buffer >= 0) { emit_byte(cinfo,e->buffer + 1); if (e->buffer + 1 == 0xFF) emit_byte(cinfo,0x00); } /*e->zc += e->sc;*/ /* carry-over converts stacked 0xFF bytes to 0x00 and output them*/ while(e->sc-->0) emit_byte(cinfo,0X00); e->sc = 0; /* Note: The 3 spacer bits in the C register guarantee * that the new buffer byte can't be 0xFF here * (see page 160 in the P&M JPEG book). */ e->buffer = temp & 0xFF; /* new output byte, might overflow later */ } else if (temp == 0xFF) { ++e->sc; /* stack 0xFF byte (which might overflow later) */ } else { /* Output all stacked 0xFF bytes, they will not overflow any more */ if (e->buffer >= 0) { emit_byte(cinfo,e->buffer); if (e->sc) { while (e->sc--) { emit_byte(cinfo,0xFF); emit_byte(cinfo,0x00); } e->sc=0; } } e->buffer = temp & 0xFF; /* new output byte (can still overflow) */ } e->c &= 0x7FFFFL; e->ct = 8; } } while (e->a < 0x8000L); }/* * Encode and output one MCU's worth of arithmetic-compressed coefficients. */voidencode_row (j_compress_ptr cinfo,JSAMPROW row,int i){ arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; unsigned char * st; unsigned char context_a=0; int num,ci, tbl, k, ke; int v, v2, m,last_val=0,Rc=0,predic_val; entropy->context=0; /* Encode the MCU data blocks */ for (num = 0; num < cinfo->image_width; num++) { /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ st =entropy->dc_stats + entropy->context*5+entropy->context_b[num]; /*predic_val=last_val+((entropy->val_b[num]-Rc)>>1);*/ /*predic_val=RIGHT_SHIFT(last_val+entropy->val_b[num],1);*/ v=get_errval(cinfo,last_val,entropy->val_b[num],Rc,entropy->val_b[num+1],row+num); /* if (i==0) printf("row[%d]:%x v=%d\n",num,row[num],v);*/ /*v=row[num]-predic_val;*/ /* Figure F.4: Encode_DC_DIFF */ if ((v ) == 0) { arith_encode(cinfo, st, 0); entropy->context = 0; /* zero diff category */ } else { arith_encode(cinfo, st, 1); /* Figure F.6: Encoding nonzero value v */ /* Figure F.7: Encoding the sign of v */ if (v > 0) { st +=1; arith_encode(cinfo, st, 0); /* Table F.4: SS = S0 + 1 */ st += 1; /* Table F.4: SP = S0 + 2 */ entropy->context = 4; /* small positive diff category */ } else { st +=1; v = -v; arith_encode(cinfo, st, 1); /* Table F.4: SS = S0 + 1 */ st += 2; /* Table F.4: SN = S0 + 3 */ entropy->context = 8; /* small negative diff category */ } /* Figure F.8: Encoding the magnitude category of v */ m = 0; if (v -= 1) { arith_encode(cinfo, st, 1); m = 1; v2 = v; if ( entropy->context_b[num]>8 ) st=entropy->dc_stats+129; else st = entropy->dc_stats + 100; /* Table H.3: X1 = X1_context(Db)*/ /*st=entropy->dc_stats+20;*/ while (v2 >>= 1) { arith_encode(cinfo, st, 1); m <<= 1; st += 1; } } arith_encode(cinfo, st, 0); /* v -=1; *m=1; *if (v>m){ *arith_encode(cinfo,st,1); *if ( entropy->context_b[num]>8 ) * st=entropy->dc_stats+129; * else * st = entropy->dc_stats + 100; * Table H.3: X1 = X1_context(Db)* *m=2; * while (v>=m){ * arith_encode (cinfo,st,1); * m <<=1; *st +=1; *} *} *arith_encode (cinfo,st,0);*/ /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ if ((m) < (int) (((INT32) 1 << cinfo->arith_dc_L) >> 1)) entropy->context = 0; /* zero diff category */ else if ((m) > (int) (((INT32) 1 << cinfo->arith_dc_U)>>1 )) entropy->context += 8; /* large diff category */ /* Figure F.9: Encoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) arith_encode(cinfo, st, (m & v) ? 1 : 0); } entropy->context_b[num]=entropy->context; Rc=entropy->val_b[num]; last_val=entropy->val_b[num]=row[num]; } }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -