⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ftgrays.c

📁 winNT技术操作系统,国外开放的原代码和LIUX一样
💻 C
📖 第 1 页 / 共 4 页
字号:
      gray_render_line( RAS_VAR_ mid_x, mid_y );
      gray_render_line( RAS_VAR_ to_x, to_y );
      return;
    }

    arc      = ras.bez_stack;
    arc[0].x = UPSCALE( to->x );
    arc[0].y = UPSCALE( to->y );
    arc[1].x = UPSCALE( control2->x );
    arc[1].y = UPSCALE( control2->y );
    arc[2].x = UPSCALE( control1->x );
    arc[2].y = UPSCALE( control1->y );
    arc[3].x = ras.x;
    arc[3].y = ras.y;

    levels    = ras.lev_stack;
    top       = 0;
    levels[0] = level;

    while ( top >= 0 )
    {
      level = levels[top];
      if ( level > 1 )
      {
        /* check that the arc crosses the current band */
        TPos  min, max, y;


        min = max = arc[0].y;
        y = arc[1].y;
        if ( y < min ) min = y;
        if ( y > max ) max = y;
        y = arc[2].y;
        if ( y < min ) min = y;
        if ( y > max ) max = y;
        y = arc[3].y;
        if ( y < min ) min = y;
        if ( y > max ) max = y;
        if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < 0 )
          goto Draw;
        gray_split_cubic( arc );
        arc += 3;
        top ++;
        levels[top] = levels[top - 1] = level - 1;
        continue;
      }

    Draw:
      {
        TPos  to_x, to_y, mid_x, mid_y;


        to_x  = arc[0].x;
        to_y  = arc[0].y;
        mid_x = ( ras.x + to_x + 3 * ( arc[1].x + arc[2].x ) ) / 8;
        mid_y = ( ras.y + to_y + 3 * ( arc[1].y + arc[2].y ) ) / 8;

        gray_render_line( RAS_VAR_ mid_x, mid_y );
        gray_render_line( RAS_VAR_ to_x, to_y );
        top --;
        arc -= 3;
      }
    }

    return;
  }



  static int
  gray_move_to( const FT_Vector*  to,
                PWorker           worker )
  {
    TPos  x, y;


    /* record current cell, if any */
    gray_record_cell( worker );

    /* start to a new position */
    x = UPSCALE( to->x );
    y = UPSCALE( to->y );

    gray_start_cell( worker, TRUNC( x ), TRUNC( y ) );

    worker->x = x;
    worker->y = y;
    return 0;
  }


  static int
  gray_line_to( const FT_Vector*  to,
                PWorker           worker )
  {
    gray_render_line( worker, UPSCALE( to->x ), UPSCALE( to->y ) );
    return 0;
  }


  static int
  gray_conic_to( const FT_Vector*  control,
                 const FT_Vector*  to,
                 PWorker           worker )
  {
    gray_render_conic( worker, control, to );
    return 0;
  }


  static int
  gray_cubic_to( const FT_Vector*  control1,
                 const FT_Vector*  control2,
                 const FT_Vector*  to,
                 PWorker           worker )
  {
    gray_render_cubic( worker, control1, control2, to );
    return 0;
  }


  static void
  gray_render_span( int             y,
                    int             count,
                    const FT_Span*  spans,
                    PWorker         worker )
  {
    unsigned char*  p;
    FT_Bitmap*      map = &worker->target;


    /* first of all, compute the scanline offset */
    p = (unsigned char*)map->buffer - y * map->pitch;
    if ( map->pitch >= 0 )
      p += ( map->rows - 1 ) * map->pitch;

    for ( ; count > 0; count--, spans++ )
    {
      unsigned char  coverage = spans->coverage;


      if ( coverage )
      {
        /* For small-spans it is faster to do it by ourselves than
         * calling `memset'.  This is mainly due to the cost of the
         * function call.
         */
        if ( spans->len >= 8 )
          FT_MEM_SET( p + spans->x, (unsigned char)coverage, spans->len );
        else
        {
          unsigned char*  q = p + spans->x;


          switch ( spans->len )
          {
          case 7: *q++ = (unsigned char)coverage;
          case 6: *q++ = (unsigned char)coverage;
          case 5: *q++ = (unsigned char)coverage;
          case 4: *q++ = (unsigned char)coverage;
          case 3: *q++ = (unsigned char)coverage;
          case 2: *q++ = (unsigned char)coverage;
          case 1: *q   = (unsigned char)coverage;
          default:
            ;
          }
        }
      }
    }
  }


  static void
  gray_hline( RAS_ARG_ TCoord  x,
                       TCoord  y,
                       TPos    area,
                       int     acount )
  {
    FT_Span*  span;
    int       count;
    int       coverage;


    /* compute the coverage line's coverage, depending on the    */
    /* outline fill rule                                         */
    /*                                                           */
    /* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */
    /*                                                           */
    coverage = (int)( area >> ( PIXEL_BITS * 2 + 1 - 8 ) );
                                                    /* use range 0..256 */
    if ( coverage < 0 )
      coverage = -coverage;

    if ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL )
    {
      coverage &= 511;

      if ( coverage > 256 )
        coverage = 512 - coverage;
      else if ( coverage == 256 )
        coverage = 255;
    }
    else
    {
      /* normal non-zero winding rule */
      if ( coverage >= 256 )
        coverage = 255;
    }

    y += (TCoord)ras.min_ey;
    x += (TCoord)ras.min_ex;

    if ( coverage )
    {
      /* see whether we can add this span to the current list */
      count = ras.num_gray_spans;
      span  = ras.gray_spans + count - 1;
      if ( count > 0                          &&
           ras.span_y == y                    &&
           (int)span->x + span->len == (int)x &&
           span->coverage == coverage         )
      {
        span->len = (unsigned short)( span->len + acount );
        return;
      }

      if ( ras.span_y != y || count >= FT_MAX_GRAY_SPANS )
      {
        if ( ras.render_span && count > 0 )
          ras.render_span( ras.span_y, count, ras.gray_spans,
                           ras.render_span_data );
        /* ras.render_span( span->y, ras.gray_spans, count ); */

#ifdef DEBUG_GRAYS

        if ( ras.span_y >= 0 )
        {
          int  n;


          fprintf( stderr, "y=%3d ", ras.span_y );
          span = ras.gray_spans;
          for ( n = 0; n < count; n++, span++ )
            fprintf( stderr, "[%d..%d]:%02x ",
                     span->x, span->x + span->len - 1, span->coverage );
          fprintf( stderr, "\n" );
        }

#endif /* DEBUG_GRAYS */

        ras.num_gray_spans = 0;
        ras.span_y         = y;

        count = 0;
        span  = ras.gray_spans;
      }
      else
        span++;

      /* add a gray span to the current list */
      span->x        = (short)x;
      span->len      = (unsigned short)acount;
      span->coverage = (unsigned char)coverage;

      ras.num_gray_spans++;
    }
  }


#ifdef DEBUG_GRAYS

  /* to be called while in the debugger */
  gray_dump_cells( RAS_ARG )
  {
    int  yindex;


    for ( yindex = 0; yindex < ras.ycount; yindex++ )
    {
      PCell  cell;


      printf( "%3d:", yindex );

      for ( cell = ras.ycells[yindex]; cell != NULL; cell = cell->next )
        printf( " (%3d, c:%4d, a:%6d)", cell->x, cell->cover, cell->area );
      printf( "\n" );
    }
  }

#endif /* DEBUG_GRAYS */


  static void
  gray_sweep( RAS_ARG_ const FT_Bitmap*  target )
  {
    int  yindex;

    FT_UNUSED( target );


    if ( ras.num_cells == 0 )
      return;

    ras.num_gray_spans = 0;

    for ( yindex = 0; yindex < ras.ycount; yindex++ )
    {
      PCell   cell  = ras.ycells[yindex];
      TCoord  cover = 0;
      TCoord  x     = 0;


      for ( ; cell != NULL; cell = cell->next )
      {
        TArea  area;


        if ( cell->x > x && cover != 0 )
          gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ),
                      cell->x - x );

        cover += cell->cover;
        area   = cover * ( ONE_PIXEL * 2 ) - cell->area;

        if ( area != 0 && cell->x >= 0 )
          gray_hline( RAS_VAR_ cell->x, yindex, area, 1 );

        x = cell->x + 1;
      }

      if ( cover != 0 )
        gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ),
                    ras.count_ex - x );
    }

    if ( ras.render_span && ras.num_gray_spans > 0 )
      ras.render_span( ras.span_y, ras.num_gray_spans,
                       ras.gray_spans, ras.render_span_data );
  }


#ifdef _STANDALONE_

  /*************************************************************************/
  /*                                                                       */
  /*  The following function should only compile in stand_alone mode,      */
  /*  i.e., when building this component without the rest of FreeType.     */
  /*                                                                       */
  /*************************************************************************/

  /*************************************************************************/
  /*                                                                       */
  /* <Function>                                                            */
  /*    FT_Outline_Decompose                                               */
  /*                                                                       */
  /* <Description>                                                         */
  /*    Walks over an outline's structure to decompose it into individual  */
  /*    segments and Bezier arcs.  This function is also able to emit      */
  /*    `move to' and `close to' operations to indicate the start and end  */
  /*    of new contours in the outline.                                    */
  /*                                                                       */
  /* <Input>                                                               */
  /*    outline        :: A pointer to the source target.                  */
  /*                                                                       */
  /*    func_interface :: A table of `emitters', i.e,. function pointers   */
  /*                      called during decomposition to indicate path     */
  /*                      operations.                                      */
  /*                                                                       */
  /*    user           :: A typeless pointer which is passed to each       */
  /*                      emitter during the decomposition.  It can be     */
  /*                      used to store the state during the               */
  /*                      decomposition.                                   */
  /*                                                                       */
  /* <Return>                                                              */
  /*    Error code.  0 means sucess.                                       */
  /*                                                                       */
  static
  int  FT_Outline_Decompose( const FT_Outline*        outline,
                             const FT_Outline_Funcs*  func_interface,
                             void*                    user )
  {
#undef SCALED
#if 0
#define SCALED( x )  ( ( (x) << shift ) - delta )
#else
#define SCALED( x )  (x)
#endif

    FT_Vector   v_last;
    FT_Vector   v_control;
    FT_Vector   v_start;

    FT_Vector*  point;
    FT_Vector*  limit;
    char*       tags;

    int   n;         /* index of contour in outline     */
    int   first;     /* index of first point in contour */
    int   error;
    char  tag;       /* current point's state           */

#if 0
    int   shift = func_interface->shift;
    TPos  delta = func_interface->delta;
#endif


    first = 0;

    for ( n = 0; n < outline->n_contours; n++ )
    {
      int  last;  /* index of last point in contour */


      last  = outline->contours[n];
      limit = outline->points + last;

      v_start = outline->points[first];
      v_last  = outline->points[last];

      v_start.x = SCALED( v_start.x );
      v_start.y = SCALED( v_start.y );

      v_last.x  = SCALED( v_last.x );
      v_last.y  = SCALED( v_last.y );

      v_control = v_start;

      point = outline->points + first;
      tags  = outline->tags  + first;
      tag   = FT_CURVE_TAG( tags[0] );

      /* A contour cannot start with a cubic control point! */
      if ( tag == FT_CURVE_TAG_CUBIC )
        goto Invalid_Outline;

      /* check first point to determine origin */
      if ( tag == FT_CURVE_TAG_CONIC )
      {
        /* first point is conic control.  Yes, this happens. */
        if ( FT_CURVE_TAG( outline->tags[last] ) == FT_CURVE_TAG_ON )
        {
          /* start at last point if it is on the curve */
          v_start = v_last;
          limit--;
        }
        else
        {
          /* if both first and last points are conic,         */
          /* start at their middle and record its position    */
          /* for closure                                      */
          v_start.x = ( v_start.x + v_last.x ) / 2;
          v_start.y = ( v_start.y + v_last.y ) / 2;

          v_last = v_start;
        }
        point--;
        tags--;
      }

      error = func_interface->move_to( &v_start, user );
      if ( error )
        goto Exit;

      while ( point < limit )
      {
        point++;
        tags++;

        tag = FT_CURVE_TAG( tags[0] );
        switch ( tag )
        {
        case FT_CURVE_TAG_ON:  /* emit a single line_to */
          {
            FT_Vector  vec;


            vec.x = SCALED( point->x );
            vec.y = SCALED( point->y );

            error = func_interface->line_to( &vec, user );
            if ( error )
              goto Exit;
            continue;
          }

        case FT_CURVE_TAG_CONIC:  /* consume conic arcs */
          {
            v_control.x = SCALED( point->x );
            v_control.y = SCALED( point->y );

          Do_Conic:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -