📄 imports.h
字号:
/*
* Mesa 3-D graphics library
* Version: 6.4
*
* Copyright (C) 1999-2005 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file imports.h
* Standard C library function wrappers.
*
* This file provides wrappers for all the standard C library functions
* like malloc(), free(), printf(), getenv(), etc.
*/
#ifndef IMPORTS_H
#define IMPORTS_H
/* XXX some of the stuff in glheader.h should be moved into this file.
*/
#include "glheader.h"
#ifdef __cplusplus
extern "C" {
#endif
/**********************************************************************/
/** \name General macros */
/*@{*/
#ifndef NULL
#define NULL 0
#endif
/*@}*/
/**********************************************************************/
/** Memory macros */
/*@{*/
/** Allocate \p BYTES bytes */
#define MALLOC(BYTES) _mesa_malloc(BYTES)
/** Allocate and zero \p BYTES bytes */
#define CALLOC(BYTES) _mesa_calloc(BYTES)
/** Allocate a structure of type \p T */
#define MALLOC_STRUCT(T) (struct T *) _mesa_malloc(sizeof(struct T))
/** Allocate and zero a structure of type \p T */
#define CALLOC_STRUCT(T) (struct T *) _mesa_calloc(sizeof(struct T))
/** Free memory */
#define FREE(PTR) _mesa_free(PTR)
/** Allocate \p BYTES aligned at \p N bytes */
#define ALIGN_MALLOC(BYTES, N) _mesa_align_malloc(BYTES, N)
/** Allocate and zero \p BYTES bytes aligned at \p N bytes */
#define ALIGN_CALLOC(BYTES, N) _mesa_align_calloc(BYTES, N)
/** Allocate a structure of type \p T aligned at \p N bytes */
#define ALIGN_MALLOC_STRUCT(T, N) (struct T *) _mesa_align_malloc(sizeof(struct T), N)
/** Allocate and zero a structure of type \p T aligned at \p N bytes */
#define ALIGN_CALLOC_STRUCT(T, N) (struct T *) _mesa_align_calloc(sizeof(struct T), N)
/** Free aligned memory */
#define ALIGN_FREE(PTR) _mesa_align_free(PTR)
/** Copy \p BYTES bytes from \p SRC into \p DST */
#define MEMCPY( DST, SRC, BYTES) _mesa_memcpy(DST, SRC, BYTES)
/** Set \p N bytes in \p DST to \p VAL */
#define MEMSET( DST, VAL, N ) _mesa_memset(DST, VAL, N)
/*@}*/
/*
* For GL_ARB_vertex_buffer_object we need to treat vertex array pointers
* as offsets into buffer stores. Since the vertex array pointer and
* buffer store pointer are both pointers and we need to add them, we use
* this macro.
* Both pointers/offsets are expressed in bytes.
*/
#define ADD_POINTERS(A, B) ( (GLubyte *) (A) + (uintptr_t) (B) )
/**********************************************************************/
/** \name [Pseudo] static array declaration.
*
* MACs and BeOS don't support static larger than 32kb, so ...
*/
/*@{*/
/**
* \def DEFARRAY
* Define a [static] unidimensional array
*/
/**
* \def DEFMARRAY
* Define a [static] bi-dimensional array
*/
/**
* \def DEFMNARRAY
* Define a [static] tri-dimensional array
*/
/**
* \def CHECKARRAY
* Verifies a [static] array was properly allocated.
*/
/**
* \def UNDEFARRAY
* Undefine (free) a [static] array.
*/
#if defined(macintosh) && !defined(__MRC__)
/*extern char *AGLAlloc(int size);*/
/*extern void AGLFree(char* ptr);*/
# define DEFARRAY(TYPE,NAME,SIZE) TYPE *NAME = (TYPE*)_mesa_alloc(sizeof(TYPE)*(SIZE))
# define DEFMARRAY(TYPE,NAME,SIZE1,SIZE2) TYPE (*NAME)[SIZE2] = (TYPE(*)[SIZE2])_mesa_alloc(sizeof(TYPE)*(SIZE1)*(SIZE2))
# define DEFMNARRAY(TYPE,NAME,SIZE1,SIZE2,SIZE3) TYPE (*NAME)[SIZE2][SIZE3] = (TYPE(*)[SIZE2][SIZE3])_mesa_alloc(sizeof(TYPE)*(SIZE1)*(SIZE2)*(SIZE3))
# define CHECKARRAY(NAME,CMD) do {if (!(NAME)) {CMD;}} while (0)
# define UNDEFARRAY(NAME) do {if ((NAME)) {_mesa_free((char*)NAME);} }while (0)
#elif defined(__BEOS__)
# define DEFARRAY(TYPE,NAME,SIZE) TYPE *NAME = (TYPE*)_mesa_malloc(sizeof(TYPE)*(SIZE))
# define DEFMARRAY(TYPE,NAME,SIZE1,SIZE2) TYPE (*NAME)[SIZE2] = (TYPE(*)[SIZE2])_mesa_malloc(sizeof(TYPE)*(SIZE1)*(SIZE2))
# define DEFMNARRAY(TYPE,NAME,SIZE1,SIZE2,SIZE3) TYPE (*NAME)[SIZE2][SIZE3] = (TYPE(*)[SIZE2][SIZE3])_mesa_malloc(sizeof(TYPE)*(SIZE1)*(SIZE2)*(SIZE3))
# define CHECKARRAY(NAME,CMD) do {if (!(NAME)) {CMD;}} while (0)
# define UNDEFARRAY(NAME) do {if ((NAME)) {_mesa_free((char*)NAME);} }while (0)
#else
# define DEFARRAY(TYPE,NAME,SIZE) TYPE NAME[SIZE]
# define DEFMARRAY(TYPE,NAME,SIZE1,SIZE2) TYPE NAME[SIZE1][SIZE2]
# define DEFMNARRAY(TYPE,NAME,SIZE1,SIZE2,SIZE3) TYPE NAME[SIZE1][SIZE2][SIZE3]
# define CHECKARRAY(NAME,CMD) do {} while(0)
# define UNDEFARRAY(NAME)
#endif
/*@}*/
/**
* Sometimes we treat GLfloats as GLints. On x86 systems, moving a float
* as a int (thereby using integer registers instead of FP registers) is
* a performance win. Typically, this can be done with ordinary casts.
* But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0)
* these casts generate warnings.
* The following union typedef is used to solve that.
*/
typedef union { GLfloat f; GLint i; } fi_type;
/**********************************************************************
* Math macros
*/
#define MAX_GLUSHORT 0xffff
#define MAX_GLUINT 0xffffffff
#ifndef M_PI
#define M_PI (3.1415926536)
#endif
#ifndef M_E
#define M_E (2.7182818284590452354)
#endif
/* XXX this is a bit of a hack needed for compilation within XFree86 */
#ifndef FLT_MIN
#define FLT_MIN (1.0e-37)
#endif
/* Degrees to radians conversion: */
#define DEG2RAD (M_PI/180.0)
/***
*** USE_IEEE: Determine if we're using IEEE floating point
***/
#if defined(__i386__) || defined(__386__) || defined(__sparc__) || \
defined(__s390x__) || defined(__powerpc__) || \
defined(__amd64__) || \
defined(ia64) || defined(__ia64__) || \
defined(__hppa__) || defined(hpux) || \
defined(__mips) || defined(_MIPS_ARCH) || \
defined(__arm__) || \
defined(__sh__) || \
(defined(__alpha__) && (defined(__IEEE_FLOAT) || !defined(VMS)))
#define USE_IEEE
#define IEEE_ONE 0x3f800000
#endif
/***
*** SQRTF: single-precision square root
***/
#if 0 /* _mesa_sqrtf() not accurate enough - temporarily disabled */
# define SQRTF(X) _mesa_sqrtf(X)
#elif defined(XFree86LOADER) && defined(IN_MODULE)
# define SQRTF(X) (float) xf86sqrt((float) (X))
#else
# define SQRTF(X) (float) sqrt((float) (X))
#endif
/***
*** INV_SQRTF: single-precision inverse square root
***/
#if 0
#define INV_SQRTF(X) _mesa_inv_sqrt(X)
#else
#define INV_SQRTF(X) (1.0F / SQRTF(X)) /* this is faster on a P4 */
#endif
/***
*** LOG2: Log base 2 of float
***/
#ifdef USE_IEEE
#if 0
/* This is pretty fast, but not accurate enough (only 2 fractional bits).
* Based on code from http://www.stereopsis.com/log2.html
*/
static INLINE GLfloat LOG2(GLfloat x)
{
const GLfloat y = x * x * x * x;
const GLuint ix = *((GLuint *) &y);
const GLuint exp = (ix >> 23) & 0xFF;
const GLint log2 = ((GLint) exp) - 127;
return (GLfloat) log2 * (1.0 / 4.0); /* 4, because of x^4 above */
}
#endif
/* Pretty fast, and accurate.
* Based on code from http://www.flipcode.com/totd/
*/
static INLINE GLfloat LOG2(GLfloat val)
{
fi_type num;
GLint log_2;
num.f = val;
log_2 = ((num.i >> 23) & 255) - 128;
num.i &= ~(255 << 23);
num.i += 127 << 23;
num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
return num.f + log_2;
}
#elif defined(XFree86LOADER) && defined(IN_MODULE)
#define LOG2(x) ((GLfloat) (xf86log(x) * 1.442695))
#else
/*
* NOTE: log_base_2(x) = log(x) / log(2)
* NOTE: 1.442695 = 1/log(2).
*/
#define LOG2(x) ((GLfloat) (log(x) * 1.442695F))
#endif
/***
*** IS_INF_OR_NAN: test if float is infinite or NaN
***/
#ifdef USE_IEEE
static INLINE int IS_INF_OR_NAN( float x )
{
fi_type tmp;
tmp.f = x;
return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31);
}
#elif defined(isfinite)
#define IS_INF_OR_NAN(x) (!isfinite(x))
#elif defined(finite)
#define IS_INF_OR_NAN(x) (!finite(x))
#elif defined(__VMS)
#define IS_INF_OR_NAN(x) (!finite(x))
#elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
#define IS_INF_OR_NAN(x) (!isfinite(x))
#else
#define IS_INF_OR_NAN(x) (!finite(x))
#endif
/***
*** IS_NEGATIVE: test if float is negative
***/
#if defined(USE_IEEE)
static INLINE int GET_FLOAT_BITS( float x )
{
fi_type fi;
fi.f = x;
return fi.i;
}
#define IS_NEGATIVE(x) (GET_FLOAT_BITS(x) < 0)
#else
#define IS_NEGATIVE(x) (x < 0.0F)
#endif
/***
*** DIFFERENT_SIGNS: test if two floats have opposite signs
***/
#if defined(USE_IEEE)
#define DIFFERENT_SIGNS(x,y) ((GET_FLOAT_BITS(x) ^ GET_FLOAT_BITS(y)) & (1<<31))
#else
/* Could just use (x*y<0) except for the flatshading requirements.
* Maybe there's a better way?
*/
#define DIFFERENT_SIGNS(x,y) ((x) * (y) <= 0.0F && (x) - (y) != 0.0F)
#endif
/***
*** CEILF: ceiling of float
*** FLOORF: floor of float
*** FABSF: absolute value of float
*** EXPF: raise e to the value
*** LDEXPF: multiply value by an integral power of two
*** FREXPF: extract mantissa and exponent from value
***/
#if defined(XFree86LOADER) && defined(IN_MODULE)
#define CEILF(x) ((GLfloat) xf86ceil(x))
#define FLOORF(x) ((GLfloat) xf86floor(x))
#define FABSF(x) ((GLfloat) xf86fabs(x))
#define EXPF(x) ((GLfloat) xf86exp(x))
#define LDEXPF(x,y) ((GLfloat) xf86ldexp(x,y))
#define FREXPF(x,y) ((GLfloat) xf86frexp(x,y))
#elif defined(__gnu_linux__)
/* C99 functions */
#define CEILF(x) ceilf(x)
#define FLOORF(x) floorf(x)
#define FABSF(x) fabsf(x)
#define EXPF(x) expf(x)
#define LDEXPF(x,y) ldexpf(x,y)
#define FREXPF(x,y) frexpf(x,y)
#else
#define CEILF(x) ((GLfloat) ceil(x))
#define FLOORF(x) ((GLfloat) floor(x))
#define FABSF(x) ((GLfloat) fabs(x))
#define EXPF(x) ((GLfloat) exp(x))
#define LDEXPF(x,y) ((GLfloat) ldexp(x,y))
#define FREXPF(x,y) ((GLfloat) frexp(x,y))
#endif
/***
*** IROUND: return (as an integer) float rounded to nearest integer
***/
#if defined(USE_SPARC_ASM) && defined(__GNUC__) && defined(__sparc__)
static INLINE int iround(float f)
{
int r;
__asm__ ("fstoi %1, %0" : "=f" (r) : "f" (f));
return r;
}
#define IROUND(x) iround(x)
#elif defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) && \
(!defined(__BEOS__) || (__GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 95)))
static INLINE int iround(float f)
{
int r;
__asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
return r;
}
#define IROUND(x) iround(x)
#elif defined(USE_X86_ASM) && defined(__MSC__) && defined(__WIN32__)
static INLINE int iround(float f)
{
int r;
_asm {
fld f
fistp r
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -