📄 enable.c
字号:
if (ctx->Pixel.PostConvolutionColorTableEnabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.PostConvolutionColorTableEnabled = state;
break;
case GL_POST_COLOR_MATRIX_COLOR_TABLE_SGI:
CHECK_EXTENSION(SGI_color_table, cap);
if (ctx->Pixel.PostColorMatrixColorTableEnabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.PostColorMatrixColorTableEnabled = state;
break;
case GL_TEXTURE_COLOR_TABLE_SGI:
CHECK_EXTENSION(SGI_texture_color_table, cap);
if (ctx->Texture.Unit[ctx->Texture.CurrentUnit].ColorTableEnabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_TEXTURE);
ctx->Texture.Unit[ctx->Texture.CurrentUnit].ColorTableEnabled = state;
break;
/* GL_EXT_convolution */
case GL_CONVOLUTION_1D:
CHECK_EXTENSION(EXT_convolution, cap);
if (ctx->Pixel.Convolution1DEnabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.Convolution1DEnabled = state;
break;
case GL_CONVOLUTION_2D:
CHECK_EXTENSION(EXT_convolution, cap);
if (ctx->Pixel.Convolution2DEnabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.Convolution2DEnabled = state;
break;
case GL_SEPARABLE_2D:
CHECK_EXTENSION(EXT_convolution, cap);
if (ctx->Pixel.Separable2DEnabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.Separable2DEnabled = state;
break;
/* GL_ARB_texture_cube_map */
case GL_TEXTURE_CUBE_MAP_ARB:
{
const GLuint curr = ctx->Texture.CurrentUnit;
struct gl_texture_unit *texUnit = &ctx->Texture.Unit[curr];
GLuint newenabled = texUnit->Enabled & ~TEXTURE_CUBE_BIT;
CHECK_EXTENSION(ARB_texture_cube_map, cap);
if (state)
newenabled |= TEXTURE_CUBE_BIT;
if (!ctx->DrawBuffer->Visual.rgbMode
|| texUnit->Enabled == newenabled)
return;
FLUSH_VERTICES(ctx, _NEW_TEXTURE);
texUnit->Enabled = newenabled;
}
break;
/* GL_EXT_secondary_color */
case GL_COLOR_SUM_EXT:
CHECK_EXTENSION(EXT_secondary_color, cap);
if (ctx->Fog.ColorSumEnabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_FOG);
ctx->Fog.ColorSumEnabled = state;
break;
/* GL_ARB_multisample */
case GL_MULTISAMPLE_ARB:
CHECK_EXTENSION(ARB_multisample, cap);
if (ctx->Multisample.Enabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_MULTISAMPLE);
ctx->Multisample.Enabled = state;
break;
case GL_SAMPLE_ALPHA_TO_COVERAGE_ARB:
CHECK_EXTENSION(ARB_multisample, cap);
if (ctx->Multisample.SampleAlphaToCoverage == state)
return;
FLUSH_VERTICES(ctx, _NEW_MULTISAMPLE);
ctx->Multisample.SampleAlphaToCoverage = state;
break;
case GL_SAMPLE_ALPHA_TO_ONE_ARB:
CHECK_EXTENSION(ARB_multisample, cap);
if (ctx->Multisample.SampleAlphaToOne == state)
return;
FLUSH_VERTICES(ctx, _NEW_MULTISAMPLE);
ctx->Multisample.SampleAlphaToOne = state;
break;
case GL_SAMPLE_COVERAGE_ARB:
CHECK_EXTENSION(ARB_multisample, cap);
if (ctx->Multisample.SampleCoverage == state)
return;
FLUSH_VERTICES(ctx, _NEW_MULTISAMPLE);
ctx->Multisample.SampleCoverage = state;
break;
case GL_SAMPLE_COVERAGE_INVERT_ARB:
CHECK_EXTENSION(ARB_multisample, cap);
if (ctx->Multisample.SampleCoverageInvert == state)
return;
FLUSH_VERTICES(ctx, _NEW_MULTISAMPLE);
ctx->Multisample.SampleCoverageInvert = state;
break;
/* GL_IBM_rasterpos_clip */
case GL_RASTER_POSITION_UNCLIPPED_IBM:
CHECK_EXTENSION(IBM_rasterpos_clip, cap);
if (ctx->Transform.RasterPositionUnclipped == state)
return;
FLUSH_VERTICES(ctx, _NEW_TRANSFORM);
ctx->Transform.RasterPositionUnclipped = state;
break;
/* GL_NV_point_sprite */
case GL_POINT_SPRITE_NV:
CHECK_EXTENSION2(NV_point_sprite, ARB_point_sprite, cap);
if (ctx->Point.PointSprite == state)
return;
FLUSH_VERTICES(ctx, _NEW_POINT);
ctx->Point.PointSprite = state;
break;
#if FEATURE_NV_vertex_program
case GL_VERTEX_PROGRAM_NV:
CHECK_EXTENSION2(NV_vertex_program, ARB_vertex_program, cap);
if (ctx->VertexProgram.Enabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_PROGRAM);
ctx->VertexProgram.Enabled = state;
break;
case GL_VERTEX_PROGRAM_POINT_SIZE_NV:
CHECK_EXTENSION2(NV_vertex_program, ARB_vertex_program, cap);
if (ctx->VertexProgram.PointSizeEnabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_PROGRAM);
ctx->VertexProgram.PointSizeEnabled = state;
break;
case GL_VERTEX_PROGRAM_TWO_SIDE_NV:
CHECK_EXTENSION2(NV_vertex_program, ARB_vertex_program, cap);
if (ctx->VertexProgram.TwoSideEnabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_PROGRAM);
ctx->VertexProgram.TwoSideEnabled = state;
break;
case GL_MAP1_VERTEX_ATTRIB0_4_NV:
case GL_MAP1_VERTEX_ATTRIB1_4_NV:
case GL_MAP1_VERTEX_ATTRIB2_4_NV:
case GL_MAP1_VERTEX_ATTRIB3_4_NV:
case GL_MAP1_VERTEX_ATTRIB4_4_NV:
case GL_MAP1_VERTEX_ATTRIB5_4_NV:
case GL_MAP1_VERTEX_ATTRIB6_4_NV:
case GL_MAP1_VERTEX_ATTRIB7_4_NV:
case GL_MAP1_VERTEX_ATTRIB8_4_NV:
case GL_MAP1_VERTEX_ATTRIB9_4_NV:
case GL_MAP1_VERTEX_ATTRIB10_4_NV:
case GL_MAP1_VERTEX_ATTRIB11_4_NV:
case GL_MAP1_VERTEX_ATTRIB12_4_NV:
case GL_MAP1_VERTEX_ATTRIB13_4_NV:
case GL_MAP1_VERTEX_ATTRIB14_4_NV:
case GL_MAP1_VERTEX_ATTRIB15_4_NV:
CHECK_EXTENSION(NV_vertex_program, cap);
{
const GLuint map = (GLuint) (cap - GL_MAP1_VERTEX_ATTRIB0_4_NV);
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map1Attrib[map] = state;
}
break;
case GL_MAP2_VERTEX_ATTRIB0_4_NV:
case GL_MAP2_VERTEX_ATTRIB1_4_NV:
case GL_MAP2_VERTEX_ATTRIB2_4_NV:
case GL_MAP2_VERTEX_ATTRIB3_4_NV:
case GL_MAP2_VERTEX_ATTRIB4_4_NV:
case GL_MAP2_VERTEX_ATTRIB5_4_NV:
case GL_MAP2_VERTEX_ATTRIB6_4_NV:
case GL_MAP2_VERTEX_ATTRIB7_4_NV:
case GL_MAP2_VERTEX_ATTRIB8_4_NV:
case GL_MAP2_VERTEX_ATTRIB9_4_NV:
case GL_MAP2_VERTEX_ATTRIB10_4_NV:
case GL_MAP2_VERTEX_ATTRIB11_4_NV:
case GL_MAP2_VERTEX_ATTRIB12_4_NV:
case GL_MAP2_VERTEX_ATTRIB13_4_NV:
case GL_MAP2_VERTEX_ATTRIB14_4_NV:
case GL_MAP2_VERTEX_ATTRIB15_4_NV:
CHECK_EXTENSION(NV_vertex_program, cap);
{
const GLuint map = (GLuint) (cap - GL_MAP2_VERTEX_ATTRIB0_4_NV);
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map2Attrib[map] = state;
}
break;
#endif /* FEATURE_NV_vertex_program */
#if FEATURE_NV_fragment_program
case GL_FRAGMENT_PROGRAM_NV:
CHECK_EXTENSION(NV_fragment_program, cap);
if (ctx->FragmentProgram.Enabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_PROGRAM);
ctx->FragmentProgram.Enabled = state;
break;
#endif /* FEATURE_NV_fragment_program */
/* GL_NV_texture_rectangle */
case GL_TEXTURE_RECTANGLE_NV:
CHECK_EXTENSION(NV_texture_rectangle, cap);
{
const GLuint curr = ctx->Texture.CurrentUnit;
struct gl_texture_unit *texUnit = &ctx->Texture.Unit[curr];
GLuint newenabled = texUnit->Enabled & ~TEXTURE_RECT_BIT;
CHECK_EXTENSION(NV_texture_rectangle, cap);
if (state)
newenabled |= TEXTURE_RECT_BIT;
if (!ctx->DrawBuffer->Visual.rgbMode
|| texUnit->Enabled == newenabled)
return;
FLUSH_VERTICES(ctx, _NEW_TEXTURE);
texUnit->Enabled = newenabled;
}
break;
/* GL_EXT_stencil_two_side */
case GL_STENCIL_TEST_TWO_SIDE_EXT:
CHECK_EXTENSION(EXT_stencil_two_side, cap);
if (ctx->Stencil.TestTwoSide == state)
return;
FLUSH_VERTICES(ctx, _NEW_STENCIL);
ctx->Stencil.TestTwoSide = state;
if (state) {
ctx->_TriangleCaps |= DD_TRI_TWOSTENCIL;
} else {
ctx->_TriangleCaps &= ~DD_TRI_TWOSTENCIL;
}
break;
#if FEATURE_ARB_fragment_program
case GL_FRAGMENT_PROGRAM_ARB:
CHECK_EXTENSION(ARB_fragment_program, cap);
if (ctx->FragmentProgram.Enabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_PROGRAM);
ctx->FragmentProgram.Enabled = state;
break;
#endif /* FEATURE_ARB_fragment_program */
/* GL_EXT_depth_bounds_test */
case GL_DEPTH_BOUNDS_TEST_EXT:
CHECK_EXTENSION(EXT_depth_bounds_test, cap);
if (state && ctx->DrawBuffer->Visual.depthBits == 0) {
_mesa_warning(ctx,
"glEnable(GL_DEPTH_BOUNDS_TEST_EXT) but no depth buffer");
return;
}
if (ctx->Depth.BoundsTest == state)
return;
FLUSH_VERTICES(ctx, _NEW_DEPTH);
ctx->Depth.BoundsTest = state;
break;
/* GL_MESA_program_debug */
case GL_FRAGMENT_PROGRAM_CALLBACK_MESA:
CHECK_EXTENSION(MESA_program_debug, cap);
ctx->FragmentProgram.CallbackEnabled = state;
break;
case GL_VERTEX_PROGRAM_CALLBACK_MESA:
CHECK_EXTENSION(MESA_program_debug, cap);
ctx->VertexProgram.CallbackEnabled = state;
break;
#if FEATURE_ATI_fragment_shader
case GL_FRAGMENT_SHADER_ATI:
CHECK_EXTENSION(ATI_fragment_shader, cap);
if (ctx->ATIFragmentShader.Enabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_PROGRAM);
ctx->ATIFragmentShader.Enabled = state;
break;
#endif
default:
_mesa_error(ctx, GL_INVALID_ENUM,
"%s(0x%x)", state ? "glEnable" : "glDisable", cap);
return;
}
if (ctx->Driver.Enable) {
(*ctx->Driver.Enable)( ctx, cap, state );
}
}
/**
* Enable GL capability.
*
* \param cap capability.
*
* \sa glEnable().
*
* Get's the current context, assures that we're outside glBegin()/glEnd() and
* calls _mesa_set_enable().
*/
void GLAPIENTRY
_mesa_Enable( GLenum cap )
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END(ctx);
_mesa_set_enable( ctx, cap, GL_TRUE );
}
/**
* Disable GL capability.
*
* \param cap capability.
*
* \sa glDisable().
*
* Get's the current context, assures that we're outside glBegin()/glEnd() and
* calls _mesa_set_enable().
*/
void GLAPIENTRY
_mesa_Disable( GLenum cap )
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END(ctx);
_mesa_set_enable( ctx, cap, GL_FALSE );
}
#undef CHECK_EXTENSION
#define CHECK_EXTENSION(EXTNAME) \
if (!ctx->Extensions.EXTNAME) { \
_mesa_error(ctx, GL_INVALID_ENUM, "glIsEnabled"); \
return GL_FALSE; \
}
/**
* Test whether a capability is enabled.
*
* \param cap capability.
*
* Returns the state of the specified capability from the current GL context.
* For the capabilities associated with extensions verifies that those
* extensions are effectively present before reporting.
*/
GLboolean GLAPIENTRY
_mesa_IsEnabled( GLenum cap )
{
GET_CURRENT_CONTEXT(ctx);
switch (cap) {
case GL_ALPHA_TEST:
return ctx->Color.AlphaEnabled;
case GL_AUTO_NORMAL:
return ctx->Eval.AutoNormal;
case GL_BLEND:
return ctx->Color.BlendEnabled;
case GL_CLIP_PLANE0:
case GL_CLIP_PLANE1:
case GL_CLIP_PLANE2:
case GL_CLIP_PLANE3:
case GL_CLIP_PLANE4:
case GL_CLIP_PLANE5:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -