📄 s_nvfragprog.c
字号:
case COND_LE: return (condCode == COND_LT || condCode == COND_EQ);
case COND_GT: return (condCode == COND_GT);
case COND_TR: return GL_TRUE;
case COND_FL: return GL_FALSE;
default: return GL_TRUE;
}
}
/**
* Store 4 floats into a register. Observe the instructions saturate and
* set-condition-code flags.
*/
static void
store_vector4( const struct fp_instruction *inst,
struct fp_machine *machine,
const GLfloat value[4] )
{
const struct fp_dst_register *dest = &(inst->DstReg);
const GLboolean clamp = inst->Saturate;
const GLboolean updateCC = inst->UpdateCondRegister;
GLfloat *dstReg;
GLfloat dummyReg[4];
GLfloat clampedValue[4];
GLboolean condWriteMask[4];
GLuint writeMask = dest->WriteMask;
switch (dest->File) {
case PROGRAM_OUTPUT:
dstReg = machine->Outputs[dest->Index];
break;
case PROGRAM_TEMPORARY:
dstReg = machine->Temporaries[dest->Index];
break;
case PROGRAM_WRITE_ONLY:
dstReg = dummyReg;
return;
default:
_mesa_problem(NULL, "bad register file in store_vector4(fp)");
return;
}
#if DEBUG_FRAG
if (value[0] > 1.0e10 ||
IS_INF_OR_NAN(value[0]) ||
IS_INF_OR_NAN(value[1]) ||
IS_INF_OR_NAN(value[2]) ||
IS_INF_OR_NAN(value[3]) )
printf("store %g %g %g %g\n", value[0], value[1], value[2], value[3]);
#endif
if (clamp) {
clampedValue[0] = CLAMP(value[0], 0.0F, 1.0F);
clampedValue[1] = CLAMP(value[1], 0.0F, 1.0F);
clampedValue[2] = CLAMP(value[2], 0.0F, 1.0F);
clampedValue[3] = CLAMP(value[3], 0.0F, 1.0F);
value = clampedValue;
}
if (dest->CondMask != COND_TR) {
condWriteMask[0] = GET_BIT(writeMask, 0)
&& test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 0)], dest->CondMask);
condWriteMask[1] = GET_BIT(writeMask, 1)
&& test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 1)], dest->CondMask);
condWriteMask[2] = GET_BIT(writeMask, 2)
&& test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 2)], dest->CondMask);
condWriteMask[3] = GET_BIT(writeMask, 3)
&& test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 3)], dest->CondMask);
writeMask = ((condWriteMask[0] << 0) |
(condWriteMask[1] << 1) |
(condWriteMask[2] << 2) |
(condWriteMask[3] << 3));
}
if (GET_BIT(writeMask, 0)) {
dstReg[0] = value[0];
if (updateCC)
machine->CondCodes[0] = generate_cc(value[0]);
}
if (GET_BIT(writeMask, 1)) {
dstReg[1] = value[1];
if (updateCC)
machine->CondCodes[1] = generate_cc(value[1]);
}
if (GET_BIT(writeMask, 2)) {
dstReg[2] = value[2];
if (updateCC)
machine->CondCodes[2] = generate_cc(value[2]);
}
if (GET_BIT(writeMask, 3)) {
dstReg[3] = value[3];
if (updateCC)
machine->CondCodes[3] = generate_cc(value[3]);
}
}
/**
* Initialize a new machine state instance from an existing one, adding
* the partial derivatives onto the input registers.
* Used to implement DDX and DDY instructions in non-trivial cases.
*/
static void
init_machine_deriv( GLcontext *ctx,
const struct fp_machine *machine,
const struct fragment_program *program,
const struct sw_span *span, char xOrY,
struct fp_machine *dMachine )
{
GLuint u;
ASSERT(xOrY == 'X' || xOrY == 'Y');
/* copy existing machine */
_mesa_memcpy(dMachine, machine, sizeof(struct fp_machine));
if (program->Base.Target == GL_FRAGMENT_PROGRAM_NV) {
/* Clear temporary registers (undefined for ARB_f_p) */
_mesa_bzero( (void*) machine->Temporaries,
MAX_NV_FRAGMENT_PROGRAM_TEMPS * 4 * sizeof(GLfloat));
}
/* Add derivatives */
if (program->InputsRead & (1 << FRAG_ATTRIB_WPOS)) {
GLfloat *wpos = (GLfloat*) machine->Inputs[FRAG_ATTRIB_WPOS];
if (xOrY == 'X') {
wpos[0] += 1.0F;
wpos[1] += 0.0F;
wpos[2] += span->dzdx;
wpos[3] += span->dwdx;
}
else {
wpos[0] += 0.0F;
wpos[1] += 1.0F;
wpos[2] += span->dzdy;
wpos[3] += span->dwdy;
}
}
if (program->InputsRead & (1 << FRAG_ATTRIB_COL0)) {
GLfloat *col0 = (GLfloat*) machine->Inputs[FRAG_ATTRIB_COL0];
if (xOrY == 'X') {
col0[0] += span->drdx * (1.0F / CHAN_MAXF);
col0[1] += span->dgdx * (1.0F / CHAN_MAXF);
col0[2] += span->dbdx * (1.0F / CHAN_MAXF);
col0[3] += span->dadx * (1.0F / CHAN_MAXF);
}
else {
col0[0] += span->drdy * (1.0F / CHAN_MAXF);
col0[1] += span->dgdy * (1.0F / CHAN_MAXF);
col0[2] += span->dbdy * (1.0F / CHAN_MAXF);
col0[3] += span->dady * (1.0F / CHAN_MAXF);
}
}
if (program->InputsRead & (1 << FRAG_ATTRIB_COL1)) {
GLfloat *col1 = (GLfloat*) machine->Inputs[FRAG_ATTRIB_COL1];
if (xOrY == 'X') {
col1[0] += span->dsrdx * (1.0F / CHAN_MAXF);
col1[1] += span->dsgdx * (1.0F / CHAN_MAXF);
col1[2] += span->dsbdx * (1.0F / CHAN_MAXF);
col1[3] += 0.0; /*XXX fix */
}
else {
col1[0] += span->dsrdy * (1.0F / CHAN_MAXF);
col1[1] += span->dsgdy * (1.0F / CHAN_MAXF);
col1[2] += span->dsbdy * (1.0F / CHAN_MAXF);
col1[3] += 0.0; /*XXX fix */
}
}
if (program->InputsRead & (1 << FRAG_ATTRIB_FOGC)) {
GLfloat *fogc = (GLfloat*) machine->Inputs[FRAG_ATTRIB_FOGC];
if (xOrY == 'X') {
fogc[0] += span->dfogdx;
}
else {
fogc[0] += span->dfogdy;
}
}
for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) {
if (program->InputsRead & (1 << (FRAG_ATTRIB_TEX0 + u))) {
GLfloat *tex = (GLfloat*) machine->Inputs[FRAG_ATTRIB_TEX0 + u];
/* XXX perspective-correct interpolation */
if (xOrY == 'X') {
tex[0] += span->texStepX[u][0];
tex[1] += span->texStepX[u][1];
tex[2] += span->texStepX[u][2];
tex[3] += span->texStepX[u][3];
}
else {
tex[0] += span->texStepY[u][0];
tex[1] += span->texStepY[u][1];
tex[2] += span->texStepY[u][2];
tex[3] += span->texStepY[u][3];
}
}
}
/* init condition codes */
dMachine->CondCodes[0] = COND_EQ;
dMachine->CondCodes[1] = COND_EQ;
dMachine->CondCodes[2] = COND_EQ;
dMachine->CondCodes[3] = COND_EQ;
}
/**
* Execute the given vertex program.
* NOTE: we do everything in single-precision floating point; we don't
* currently observe the single/half/fixed-precision qualifiers.
* \param ctx - rendering context
* \param program - the fragment program to execute
* \param machine - machine state (register file)
* \param maxInst - max number of instructions to execute
* \return GL_TRUE if program completed or GL_FALSE if program executed KIL.
*/
static GLboolean
execute_program( GLcontext *ctx,
const struct fragment_program *program, GLuint maxInst,
struct fp_machine *machine, const struct sw_span *span,
GLuint column )
{
GLuint pc;
#if DEBUG_FRAG
printf("execute fragment program --------------------\n");
#endif
for (pc = 0; pc < maxInst; pc++) {
const struct fp_instruction *inst = program->Instructions + pc;
if (ctx->FragmentProgram.CallbackEnabled &&
ctx->FragmentProgram.Callback) {
ctx->FragmentProgram.CurrentPosition = inst->StringPos;
ctx->FragmentProgram.Callback(program->Base.Target,
ctx->FragmentProgram.CallbackData);
}
switch (inst->Opcode) {
case FP_OPCODE_ABS:
{
GLfloat a[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
result[0] = FABSF(a[0]);
result[1] = FABSF(a[1]);
result[2] = FABSF(a[2]);
result[3] = FABSF(a[3]);
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_ADD:
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = a[0] + b[0];
result[1] = a[1] + b[1];
result[2] = a[2] + b[2];
result[3] = a[3] + b[3];
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_CMP:
{
GLfloat a[4], b[4], c[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
fetch_vector4( ctx, &inst->SrcReg[2], machine, program, c );
result[0] = a[0] < 0.0F ? b[0] : c[0];
result[1] = a[1] < 0.0F ? b[1] : c[1];
result[2] = a[2] < 0.0F ? b[2] : c[2];
result[3] = a[3] < 0.0F ? b[3] : c[3];
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_COS:
{
GLfloat a[4], result[4];
fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
result[0] = result[1] = result[2] = result[3] = (GLfloat)_mesa_cos(a[0]);
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_DDX: /* Partial derivative with respect to X */
{
GLfloat a[4], aNext[4], result[4];
struct fp_machine dMachine;
if (!fetch_vector4_deriv(ctx, &inst->SrcReg[0], span, 'X',
column, result)) {
/* This is tricky. Make a copy of the current machine state,
* increment the input registers by the dx or dy partial
* derivatives, then re-execute the program up to the
* preceeding instruction, then fetch the source register.
* Finally, find the difference in the register values for
* the original and derivative runs.
*/
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a);
init_machine_deriv(ctx, machine, program, span,
'X', &dMachine);
execute_program(ctx, program, pc, &dMachine, span, column);
fetch_vector4( ctx, &inst->SrcReg[0], &dMachine, program, aNext );
result[0] = aNext[0] - a[0];
result[1] = aNext[1] - a[1];
result[2] = aNext[2] - a[2];
result[3] = aNext[3] - a[3];
}
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_DDY: /* Partial derivative with respect to Y */
{
GLfloat a[4], aNext[4], result[4];
struct fp_machine dMachine;
if (!fetch_vector4_deriv(ctx, &inst->SrcReg[0], span, 'Y',
column, result)) {
init_machine_deriv(ctx, machine, program, span,
'Y', &dMachine);
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a);
execute_program(ctx, program, pc, &dMachine, span, column);
fetch_vector4( ctx, &inst->SrcReg[0], &dMachine, program, aNext );
result[0] = aNext[0] - a[0];
result[1] = aNext[1] - a[1];
result[2] = aNext[2] - a[2];
result[3] = aNext[3] - a[3];
}
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_DP3:
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = result[1] = result[2] = result[3] =
a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
store_vector4( inst, machine, result );
#if DEBUG_FRAG
printf("DP3 %g = (%g %g %g) . (%g %g %g)\n",
result[0], a[0], a[1], a[2], b[0], b[1], b[2]);
#endif
}
break;
case FP_OPCODE_DP4:
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = result[1] = result[2] = result[3] =
a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
store_vector4( inst, machine, result );
#if DEBUG_FRAG
printf("DP4 %g = (%g, %g %g %g) . (%g, %g %g %g)\n",
result[0], a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
#endif
}
break;
case FP_OPCODE_DPH:
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = result[1] = result[2] = result[3] =
a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + b[3];
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_DST: /* Distance vector */
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = 1.0F;
result[1] = a[1] * b[1];
result[2] = a[2];
result[3] = b[3];
store_vector4( inst, machine, result );
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -