📄 s_span.c
字号:
return lambda;
}
/**
* Fill in the span.texcoords array from the interpolation values.
* Note: in the places where we divide by Q (or mult by invQ) we're
* really doing two things: perspective correction and texcoord
* projection. Remember, for texcoord (s,t,r,q) we need to index
* texels with (s/q, t/q, r/q).
* If we're using a fragment program, we never do the division
* for texcoord projection. That's done by the TXP instruction
* or user-written code.
*/
static void
interpolate_texcoords(GLcontext *ctx, struct sw_span *span)
{
ASSERT(span->interpMask & SPAN_TEXTURE);
ASSERT(!(span->arrayMask & SPAN_TEXTURE));
if (ctx->Texture._EnabledCoordUnits > 1) {
/* multitexture */
GLuint u;
span->arrayMask |= SPAN_TEXTURE;
for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
if (ctx->Texture._EnabledCoordUnits & (1 << u)) {
const struct gl_texture_object *obj =ctx->Texture.Unit[u]._Current;
GLfloat texW, texH;
GLboolean needLambda;
if (obj) {
const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel];
needLambda = (obj->MinFilter != obj->MagFilter)
|| ctx->FragmentProgram._Active;
texW = img->WidthScale;
texH = img->HeightScale;
}
else {
/* using a fragment program */
texW = 1.0;
texH = 1.0;
needLambda = GL_FALSE;
}
if (needLambda) {
GLfloat (*texcoord)[4] = span->array->texcoords[u];
GLfloat *lambda = span->array->lambda[u];
const GLfloat dsdx = span->texStepX[u][0];
const GLfloat dsdy = span->texStepY[u][0];
const GLfloat dtdx = span->texStepX[u][1];
const GLfloat dtdy = span->texStepY[u][1];
const GLfloat drdx = span->texStepX[u][2];
const GLfloat dqdx = span->texStepX[u][3];
const GLfloat dqdy = span->texStepY[u][3];
GLfloat s = span->tex[u][0];
GLfloat t = span->tex[u][1];
GLfloat r = span->tex[u][2];
GLfloat q = span->tex[u][3];
GLuint i;
if (ctx->FragmentProgram._Active) {
/* do perspective correction but don't divide s, t, r by q */
const GLfloat dwdx = span->dwdx;
GLfloat w = span->w;
for (i = 0; i < span->end; i++) {
const GLfloat invW = 1.0F / w;
texcoord[i][0] = s * invW;
texcoord[i][1] = t * invW;
texcoord[i][2] = r * invW;
texcoord[i][3] = q * invW;
lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
dqdx, dqdy, texW, texH,
s, t, q, invW);
s += dsdx;
t += dtdx;
r += drdx;
q += dqdx;
w += dwdx;
}
}
else {
for (i = 0; i < span->end; i++) {
const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
texcoord[i][0] = s * invQ;
texcoord[i][1] = t * invQ;
texcoord[i][2] = r * invQ;
texcoord[i][3] = q;
lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
dqdx, dqdy, texW, texH,
s, t, q, invQ);
s += dsdx;
t += dtdx;
r += drdx;
q += dqdx;
}
}
span->arrayMask |= SPAN_LAMBDA;
}
else {
GLfloat (*texcoord)[4] = span->array->texcoords[u];
GLfloat *lambda = span->array->lambda[u];
const GLfloat dsdx = span->texStepX[u][0];
const GLfloat dtdx = span->texStepX[u][1];
const GLfloat drdx = span->texStepX[u][2];
const GLfloat dqdx = span->texStepX[u][3];
GLfloat s = span->tex[u][0];
GLfloat t = span->tex[u][1];
GLfloat r = span->tex[u][2];
GLfloat q = span->tex[u][3];
GLuint i;
if (ctx->FragmentProgram._Active) {
/* do perspective correction but don't divide s, t, r by q */
const GLfloat dwdx = span->dwdx;
GLfloat w = span->w;
for (i = 0; i < span->end; i++) {
const GLfloat invW = 1.0F / w;
texcoord[i][0] = s * invW;
texcoord[i][1] = t * invW;
texcoord[i][2] = r * invW;
texcoord[i][3] = q * invW;
lambda[i] = 0.0;
s += dsdx;
t += dtdx;
r += drdx;
q += dqdx;
w += dwdx;
}
}
else if (dqdx == 0.0F) {
/* Ortho projection or polygon's parallel to window X axis */
const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
for (i = 0; i < span->end; i++) {
texcoord[i][0] = s * invQ;
texcoord[i][1] = t * invQ;
texcoord[i][2] = r * invQ;
texcoord[i][3] = q;
lambda[i] = 0.0;
s += dsdx;
t += dtdx;
r += drdx;
}
}
else {
for (i = 0; i < span->end; i++) {
const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
texcoord[i][0] = s * invQ;
texcoord[i][1] = t * invQ;
texcoord[i][2] = r * invQ;
texcoord[i][3] = q;
lambda[i] = 0.0;
s += dsdx;
t += dtdx;
r += drdx;
q += dqdx;
}
}
} /* lambda */
} /* if */
} /* for */
}
else {
/* single texture */
const struct gl_texture_object *obj = ctx->Texture.Unit[0]._Current;
GLfloat texW, texH;
GLboolean needLambda;
if (obj) {
const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel];
needLambda = (obj->MinFilter != obj->MagFilter)
|| ctx->FragmentProgram._Active;
texW = (GLfloat) img->WidthScale;
texH = (GLfloat) img->HeightScale;
}
else {
needLambda = GL_FALSE;
texW = texH = 1.0;
}
span->arrayMask |= SPAN_TEXTURE;
if (needLambda) {
/* just texture unit 0, with lambda */
GLfloat (*texcoord)[4] = span->array->texcoords[0];
GLfloat *lambda = span->array->lambda[0];
const GLfloat dsdx = span->texStepX[0][0];
const GLfloat dsdy = span->texStepY[0][0];
const GLfloat dtdx = span->texStepX[0][1];
const GLfloat dtdy = span->texStepY[0][1];
const GLfloat drdx = span->texStepX[0][2];
const GLfloat dqdx = span->texStepX[0][3];
const GLfloat dqdy = span->texStepY[0][3];
GLfloat s = span->tex[0][0];
GLfloat t = span->tex[0][1];
GLfloat r = span->tex[0][2];
GLfloat q = span->tex[0][3];
GLuint i;
if (ctx->FragmentProgram._Active) {
/* do perspective correction but don't divide s, t, r by q */
const GLfloat dwdx = span->dwdx;
GLfloat w = span->w;
for (i = 0; i < span->end; i++) {
const GLfloat invW = 1.0F / w;
texcoord[i][0] = s * invW;
texcoord[i][1] = t * invW;
texcoord[i][2] = r * invW;
texcoord[i][3] = q * invW;
lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
dqdx, dqdy, texW, texH,
s, t, q, invW);
s += dsdx;
t += dtdx;
r += drdx;
q += dqdx;
w += dwdx;
}
}
else {
/* tex.c */
for (i = 0; i < span->end; i++) {
const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
dqdx, dqdy, texW, texH,
s, t, q, invQ);
texcoord[i][0] = s * invQ;
texcoord[i][1] = t * invQ;
texcoord[i][2] = r * invQ;
texcoord[i][3] = q;
s += dsdx;
t += dtdx;
r += drdx;
q += dqdx;
}
}
span->arrayMask |= SPAN_LAMBDA;
}
else {
/* just texture 0, without lambda */
GLfloat (*texcoord)[4] = span->array->texcoords[0];
const GLfloat dsdx = span->texStepX[0][0];
const GLfloat dtdx = span->texStepX[0][1];
const GLfloat drdx = span->texStepX[0][2];
const GLfloat dqdx = span->texStepX[0][3];
GLfloat s = span->tex[0][0];
GLfloat t = span->tex[0][1];
GLfloat r = span->tex[0][2];
GLfloat q = span->tex[0][3];
GLuint i;
if (ctx->FragmentProgram._Active) {
/* do perspective correction but don't divide s, t, r by q */
const GLfloat dwdx = span->dwdx;
GLfloat w = span->w;
for (i = 0; i < span->end; i++) {
const GLfloat invW = 1.0F / w;
texcoord[i][0] = s * invW;
texcoord[i][1] = t * invW;
texcoord[i][2] = r * invW;
texcoord[i][3] = q * invW;
s += dsdx;
t += dtdx;
r += drdx;
q += dqdx;
w += dwdx;
}
}
else if (dqdx == 0.0F) {
/* Ortho projection or polygon's parallel to window X axis */
const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
for (i = 0; i < span->end; i++) {
texcoord[i][0] = s * invQ;
texcoord[i][1] = t * invQ;
texcoord[i][2] = r * invQ;
texcoord[i][3] = q;
s += dsdx;
t += dtdx;
r += drdx;
}
}
else {
for (i = 0; i < span->end; i++) {
const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
texcoord[i][0] = s * invQ;
texcoord[i][1] = t * invQ;
texcoord[i][2] = r * invQ;
texcoord[i][3] = q;
s += dsdx;
t += dtdx;
r += drdx;
q += dqdx;
}
}
}
}
}
/**
* Apply the current polygon stipple pattern to a span of pixels.
*/
static void
stipple_polygon_span( GLcontext *ctx, struct sw_span *span )
{
const GLuint highbit = 0x80000000;
const GLuint stipple = ctx->PolygonStipple[span->y % 32];
GLubyte *mask = span->array->mask;
GLuint i, m;
ASSERT(ctx->Polygon.StippleFlag);
ASSERT((span->arrayMask & SPAN_XY) == 0);
m = highbit >> (GLuint) (span->x % 32);
for (i = 0; i < span->end; i++) {
if ((m & stipple) == 0) {
mask[i] = 0;
}
m = m >> 1;
if (m == 0) {
m = highbit;
}
}
span->writeAll = GL_FALSE;
}
/**
* Clip a pixel span to the current buffer/window boundaries:
* DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax. This will accomplish
* window clipping and scissoring.
* Return: GL_TRUE some pixels still visible
* GL_FALSE nothing visible
*/
static GLuint
clip_span( GLcontext *ctx, struct sw_span *span )
{
const GLint xmin = ctx->DrawBuffer->_Xmin;
const GLint xmax = ctx->DrawBuffer->_Xmax;
const GLint ymin = ctx->DrawBuffer->_Ymin;
const GLint ymax = ctx->DrawBuffer->_Ymax;
if (span->arrayMask & SPAN_XY) {
/* arrays of x/y pixel coords */
const GLint *x = span->array->x;
const GLint *y = span->array->y;
const GLint n = span->end;
GLubyte *mask = span->array->mask;
GLint i;
if (span->arrayMask & SPAN_MASK) {
/* note: using & intead of && to reduce branches */
for (i = 0; i < n; i++) {
mask[i] &= (x[i] >= xmin) & (x[i] < xmax)
& (y[i] >= ymin) & (y[i] < ymax);
}
}
else {
/* note: using & intead of && to reduce branches */
for (i = 0; i < n; i++) {
mask[i] = (x[i] >= xmin) & (x[i] < xmax)
& (y[i] >= ymin) & (y[i] < ymax);
}
}
return GL_TRUE; /* some pixels visible */
}
else {
/* horizontal span of pixels */
const GLint x = span->x;
const GLint y = span->y;
const GLint n = span->end;
/* Trivial rejection tests */
if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) {
span->end = 0;
return GL_FALSE; /* all pixels clipped */
}
/* Clip to the left */
if (x < xmin) {
ASSERT(x + n > xmin);
span->writeAll = GL_FALSE;
_mesa_bzero(span->array->mask, (xmin - x) * sizeof(GLubyte));
}
/* Clip to right */
if (x + n > xmax) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -