📄 s_aaline.c
字号:
/*
* Mesa 3-D graphics library
* Version: 6.1
*
* Copyright (C) 1999-2004 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "glheader.h"
#include "imports.h"
#include "macros.h"
#include "swrast/s_aaline.h"
#include "swrast/s_context.h"
#include "swrast/s_span.h"
#include "swrast/swrast.h"
#include "mtypes.h"
#define SUB_PIXEL 4
/*
* Info about the AA line we're rendering
*/
struct LineInfo
{
GLfloat x0, y0; /* start */
GLfloat x1, y1; /* end */
GLfloat dx, dy; /* direction vector */
GLfloat len; /* length */
GLfloat halfWidth; /* half of line width */
GLfloat xAdj, yAdj; /* X and Y adjustment for quad corners around line */
/* for coverage computation */
GLfloat qx0, qy0; /* quad vertices */
GLfloat qx1, qy1;
GLfloat qx2, qy2;
GLfloat qx3, qy3;
GLfloat ex0, ey0; /* quad edge vectors */
GLfloat ex1, ey1;
GLfloat ex2, ey2;
GLfloat ex3, ey3;
/* DO_Z */
GLfloat zPlane[4];
/* DO_FOG */
GLfloat fPlane[4];
/* DO_RGBA */
GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
/* DO_INDEX */
GLfloat iPlane[4];
/* DO_SPEC */
GLfloat srPlane[4], sgPlane[4], sbPlane[4];
/* DO_TEX or DO_MULTITEX */
GLfloat sPlane[MAX_TEXTURE_COORD_UNITS][4];
GLfloat tPlane[MAX_TEXTURE_COORD_UNITS][4];
GLfloat uPlane[MAX_TEXTURE_COORD_UNITS][4];
GLfloat vPlane[MAX_TEXTURE_COORD_UNITS][4];
GLfloat lambda[MAX_TEXTURE_COORD_UNITS];
GLfloat texWidth[MAX_TEXTURE_COORD_UNITS];
GLfloat texHeight[MAX_TEXTURE_COORD_UNITS];
struct sw_span span;
};
/*
* Compute the equation of a plane used to interpolate line fragment data
* such as color, Z, texture coords, etc.
* Input: (x0, y0) and (x1,y1) are the endpoints of the line.
* z0, and z1 are the end point values to interpolate.
* Output: plane - the plane equation.
*
* Note: we don't really have enough parameters to specify a plane.
* We take the endpoints of the line and compute a plane such that
* the cross product of the line vector and the plane normal is
* parallel to the projection plane.
*/
static void
compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,
GLfloat z0, GLfloat z1, GLfloat plane[4])
{
#if 0
/* original */
const GLfloat px = x1 - x0;
const GLfloat py = y1 - y0;
const GLfloat pz = z1 - z0;
const GLfloat qx = -py;
const GLfloat qy = px;
const GLfloat qz = 0;
const GLfloat a = py * qz - pz * qy;
const GLfloat b = pz * qx - px * qz;
const GLfloat c = px * qy - py * qx;
const GLfloat d = -(a * x0 + b * y0 + c * z0);
plane[0] = a;
plane[1] = b;
plane[2] = c;
plane[3] = d;
#else
/* simplified */
const GLfloat px = x1 - x0;
const GLfloat py = y1 - y0;
const GLfloat pz = z0 - z1;
const GLfloat a = pz * px;
const GLfloat b = pz * py;
const GLfloat c = px * px + py * py;
const GLfloat d = -(a * x0 + b * y0 + c * z0);
if (a == 0.0 && b == 0.0 && c == 0.0 && d == 0.0) {
plane[0] = 0.0;
plane[1] = 0.0;
plane[2] = 1.0;
plane[3] = 0.0;
}
else {
plane[0] = a;
plane[1] = b;
plane[2] = c;
plane[3] = d;
}
#endif
}
static INLINE void
constant_plane(GLfloat value, GLfloat plane[4])
{
plane[0] = 0.0;
plane[1] = 0.0;
plane[2] = -1.0;
plane[3] = value;
}
static INLINE GLfloat
solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
{
const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
return z;
}
#define SOLVE_PLANE(X, Y, PLANE) \
((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
/*
* Return 1 / solve_plane().
*/
static INLINE GLfloat
solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
{
const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
if (denom == 0.0)
return 0.0;
else
return -plane[2] / denom;
}
/*
* Solve plane and return clamped GLchan value.
*/
static INLINE GLchan
solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
{
const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
#if CHAN_TYPE == GL_FLOAT
return CLAMP(z, 0.0F, CHAN_MAXF);
#else
if (z < 0)
return 0;
else if (z > CHAN_MAX)
return CHAN_MAX;
return (GLchan) IROUND_POS(z);
#endif
}
/*
* Compute mipmap level of detail.
*/
static INLINE GLfloat
compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
GLfloat invQ, GLfloat width, GLfloat height)
{
GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width;
GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width;
GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height;
GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height;
GLfloat r1 = dudx * dudx + dudy * dudy;
GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
GLfloat rho2 = r1 + r2;
/* return log base 2 of rho */
if (rho2 == 0.0F)
return 0.0;
else
return (GLfloat) (log(rho2) * 1.442695 * 0.5);/* 1.442695 = 1/log(2) */
}
/*
* Fill in the samples[] array with the (x,y) subpixel positions of
* xSamples * ySamples sample positions.
* Note that the four corner samples are put into the first four
* positions of the array. This allows us to optimize for the common
* case of all samples being inside the polygon.
*/
static void
make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2])
{
const GLfloat dx = 1.0F / (GLfloat) xSamples;
const GLfloat dy = 1.0F / (GLfloat) ySamples;
GLint x, y;
GLint i;
i = 4;
for (x = 0; x < xSamples; x++) {
for (y = 0; y < ySamples; y++) {
GLint j;
if (x == 0 && y == 0) {
/* lower left */
j = 0;
}
else if (x == xSamples - 1 && y == 0) {
/* lower right */
j = 1;
}
else if (x == 0 && y == ySamples - 1) {
/* upper left */
j = 2;
}
else if (x == xSamples - 1 && y == ySamples - 1) {
/* upper right */
j = 3;
}
else {
j = i++;
}
samples[j][0] = x * dx + 0.5F * dx;
samples[j][1] = y * dy + 0.5F * dy;
}
}
}
/*
* Compute how much of the given pixel's area is inside the rectangle
* defined by vertices v0, v1, v2, v3.
* Vertices MUST be specified in counter-clockwise order.
* Return: coverage in [0, 1].
*/
static GLfloat
compute_coveragef(const struct LineInfo *info,
GLint winx, GLint winy)
{
static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2];
static GLboolean haveSamples = GL_FALSE;
const GLfloat x = (GLfloat) winx;
const GLfloat y = (GLfloat) winy;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -