📄 s_copypix.c
字号:
/*
* Mesa 3-D graphics library
* Version: 6.4
*
* Copyright (C) 1999-2005 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "glheader.h"
#include "context.h"
#include "colormac.h"
#include "convolve.h"
#include "histogram.h"
#include "image.h"
#include "macros.h"
#include "imports.h"
#include "pixel.h"
#include "s_context.h"
#include "s_depth.h"
#include "s_pixeltex.h"
#include "s_span.h"
#include "s_stencil.h"
#include "s_texture.h"
#include "s_zoom.h"
/*
* Determine if there's overlap in an image copy.
* This test also compensates for the fact that copies are done from
* bottom to top and overlaps can sometimes be handled correctly
* without making a temporary image copy.
*/
static GLboolean
regions_overlap(GLint srcx, GLint srcy,
GLint dstx, GLint dsty,
GLint width, GLint height,
GLfloat zoomX, GLfloat zoomY)
{
if (zoomX == 1.0 && zoomY == 1.0) {
/* no zoom */
if (srcx >= dstx + width || (srcx + width <= dstx)) {
return GL_FALSE;
}
else if (srcy < dsty) { /* this is OK */
return GL_FALSE;
}
else if (srcy > dsty + height) {
return GL_FALSE;
}
else {
return GL_TRUE;
}
}
else {
/* add one pixel of slop when zooming, just to be safe */
if ((srcx > dstx + (width * zoomX) + 1) || (srcx + width + 1 < dstx)) {
return GL_FALSE;
}
else if ((srcy < dsty) && (srcy + height < dsty + (height * zoomY))) {
return GL_FALSE;
}
else if ((srcy > dsty) && (srcy + height > dsty + (height * zoomY))) {
return GL_FALSE;
}
else {
return GL_TRUE;
}
}
}
/**
* Convert GLfloat[n][4] colors to GLchan[n][4].
* XXX maybe move into image.c
*/
static void
float_span_to_chan(GLuint n, CONST GLfloat in[][4], GLchan out[][4])
{
GLuint i;
for (i = 0; i < n; i++) {
UNCLAMPED_FLOAT_TO_CHAN(out[i][RCOMP], in[i][RCOMP]);
UNCLAMPED_FLOAT_TO_CHAN(out[i][GCOMP], in[i][GCOMP]);
UNCLAMPED_FLOAT_TO_CHAN(out[i][BCOMP], in[i][BCOMP]);
UNCLAMPED_FLOAT_TO_CHAN(out[i][ACOMP], in[i][ACOMP]);
}
}
/**
* Convert GLchan[n][4] colors to GLfloat[n][4].
* XXX maybe move into image.c
*/
static void
chan_span_to_float(GLuint n, CONST GLchan in[][4], GLfloat out[][4])
{
GLuint i;
for (i = 0; i < n; i++) {
out[i][RCOMP] = CHAN_TO_FLOAT(in[i][RCOMP]);
out[i][GCOMP] = CHAN_TO_FLOAT(in[i][GCOMP]);
out[i][BCOMP] = CHAN_TO_FLOAT(in[i][BCOMP]);
out[i][ACOMP] = CHAN_TO_FLOAT(in[i][ACOMP]);
}
}
/*
* RGBA copypixels with convolution.
*/
static void
copy_conv_rgba_pixels(GLcontext *ctx, GLint srcx, GLint srcy,
GLint width, GLint height, GLint destx, GLint desty)
{
struct gl_renderbuffer *drawRb = NULL;
GLboolean quick_draw;
GLint row;
GLboolean changeBuffer;
const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F;
const GLuint transferOps = ctx->_ImageTransferState;
GLfloat *dest, *tmpImage, *convImage;
struct sw_span span;
INIT_SPAN(span, GL_BITMAP, 0, 0, SPAN_RGBA);
if (ctx->Depth.Test)
_swrast_span_default_z(ctx, &span);
if (ctx->Fog.Enabled)
_swrast_span_default_fog(ctx, &span);
if (SWRAST_CONTEXT(ctx)->_RasterMask == 0
&& !zoom
&& destx >= 0
&& destx + width <= (GLint) ctx->DrawBuffer->Width) {
quick_draw = GL_TRUE;
drawRb = ctx->DrawBuffer->_ColorDrawBuffers[0][0];
}
else {
quick_draw = GL_FALSE;
}
/* If read and draw buffer are different we must do buffer switching */
changeBuffer = ctx->Pixel.ReadBuffer != ctx->Color.DrawBuffer[0]
|| ctx->DrawBuffer != ctx->ReadBuffer;
/* allocate space for GLfloat image */
tmpImage = (GLfloat *) MALLOC(width * height * 4 * sizeof(GLfloat));
if (!tmpImage) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels");
return;
}
convImage = (GLfloat *) MALLOC(width * height * 4 * sizeof(GLfloat));
if (!convImage) {
FREE(tmpImage);
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels");
return;
}
if (changeBuffer) {
/* choose the read buffer */
_swrast_use_read_buffer(ctx);
}
/* read source image */
dest = tmpImage;
for (row = 0; row < height; row++) {
GLchan rgba[MAX_WIDTH][4];
/* Read GLchan and convert to GLfloat */
_swrast_read_rgba_span(ctx, ctx->ReadBuffer->_ColorReadBuffer,
width, srcx, srcy + row, rgba);
chan_span_to_float(width, (CONST GLchan (*)[4]) rgba,
(GLfloat (*)[4]) dest);
dest += 4 * width;
}
if (changeBuffer) {
/* restore default src/dst buffer */
_swrast_use_draw_buffer(ctx);
}
/* do the image transfer ops which preceed convolution */
for (row = 0; row < height; row++) {
GLfloat (*rgba)[4] = (GLfloat (*)[4]) (tmpImage + row * width * 4);
_mesa_apply_rgba_transfer_ops(ctx,
transferOps & IMAGE_PRE_CONVOLUTION_BITS,
width, rgba);
}
/* do convolution */
if (ctx->Pixel.Convolution2DEnabled) {
_mesa_convolve_2d_image(ctx, &width, &height, tmpImage, convImage);
}
else {
ASSERT(ctx->Pixel.Separable2DEnabled);
_mesa_convolve_sep_image(ctx, &width, &height, tmpImage, convImage);
}
FREE(tmpImage);
/* do remaining post-convolution image transfer ops */
for (row = 0; row < height; row++) {
GLfloat (*rgba)[4] = (GLfloat (*)[4]) (convImage + row * width * 4);
_mesa_apply_rgba_transfer_ops(ctx,
transferOps & IMAGE_POST_CONVOLUTION_BITS,
width, rgba);
}
/* write the new image */
for (row = 0; row < height; row++) {
const GLfloat *src = convImage + row * width * 4;
GLint dy;
/* convert floats back to chan */
float_span_to_chan(width, (const GLfloat (*)[4]) src, span.array->rgba);
if (ctx->Pixel.PixelTextureEnabled && ctx->Texture._EnabledUnits) {
span.end = width;
_swrast_pixel_texture(ctx, &span);
}
/* write row to framebuffer */
dy = desty + row;
if (quick_draw && dy >= 0 && dy < (GLint) ctx->DrawBuffer->Height) {
drawRb->PutRow(ctx, drawRb, width, destx, dy, span.array->rgba, NULL);
}
else if (zoom) {
span.x = destx;
span.y = dy;
span.end = width;
_swrast_write_zoomed_rgba_span(ctx, &span,
(CONST GLchan (*)[4])span.array->rgba,
desty, 0);
}
else {
span.x = destx;
span.y = dy;
span.end = width;
_swrast_write_rgba_span(ctx, &span);
}
}
FREE(convImage);
}
/*
* RGBA copypixels
*/
static void
copy_rgba_pixels(GLcontext *ctx, GLint srcx, GLint srcy,
GLint width, GLint height, GLint destx, GLint desty)
{
struct gl_renderbuffer *drawRb;
GLchan *tmpImage,*p;
GLboolean quick_draw;
GLint sy, dy, stepy, j;
GLboolean changeBuffer;
const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F;
GLint overlapping;
const GLuint transferOps = ctx->_ImageTransferState;
struct sw_span span;
if (!ctx->ReadBuffer->_ColorReadBuffer) {
/* no readbuffer - OK */
return;
}
INIT_SPAN(span, GL_BITMAP, 0, 0, SPAN_RGBA);
if (ctx->Pixel.Convolution2DEnabled || ctx->Pixel.Separable2DEnabled) {
copy_conv_rgba_pixels(ctx, srcx, srcy, width, height, destx, desty);
return;
}
/* Determine if copy should be done bottom-to-top or top-to-bottom */
if (srcy < desty) {
/* top-down max-to-min */
sy = srcy + height - 1;
dy = desty + height - 1;
stepy = -1;
}
else {
/* bottom-up min-to-max */
sy = srcy;
dy = desty;
stepy = 1;
}
if (ctx->DrawBuffer == ctx->ReadBuffer) {
overlapping = regions_overlap(srcx, srcy, destx, desty, width, height,
ctx->Pixel.ZoomX, ctx->Pixel.ZoomY);
}
else {
overlapping = GL_FALSE;
}
if (ctx->Depth.Test)
_swrast_span_default_z(ctx, &span);
if (ctx->Fog.Enabled)
_swrast_span_default_fog(ctx, &span);
if (SWRAST_CONTEXT(ctx)->_RasterMask == 0
&& !zoom
&& destx >= 0
&& destx + width <= (GLint) ctx->DrawBuffer->Width) {
quick_draw = GL_TRUE;
drawRb = ctx->DrawBuffer->_ColorDrawBuffers[0][0];
}
else {
quick_draw = GL_FALSE;
drawRb = NULL;
}
/* If read and draw buffer are different we must do buffer switching */
changeBuffer = ctx->Pixel.ReadBuffer != ctx->Color.DrawBuffer[0]
|| ctx->DrawBuffer != ctx->ReadBuffer;
if (overlapping) {
GLint ssy = sy;
tmpImage = (GLchan *) MALLOC(width * height * sizeof(GLchan) * 4);
if (!tmpImage) {
_mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" );
return;
}
/* setup source */
if (changeBuffer)
_swrast_use_read_buffer(ctx);
/* read the source image */
p = tmpImage;
for (j = 0; j < height; j++, ssy += stepy) {
_swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer,
width, srcx, ssy, (GLchan (*)[4]) p );
p += width * 4;
}
p = tmpImage;
/* restore dest */
if (changeBuffer) {
_swrast_use_draw_buffer(ctx);
changeBuffer = GL_FALSE;
}
}
else {
tmpImage = NULL; /* silence compiler warnings */
p = NULL;
}
for (j = 0; j < height; j++, sy += stepy, dy += stepy) {
/* Get source pixels */
if (overlapping) {
/* get from buffered image */
ASSERT(width < MAX_WIDTH);
MEMCPY(span.array->rgba, p, width * sizeof(GLchan) * 4);
p += width * 4;
}
else {
/* get from framebuffer */
if (changeBuffer)
_swrast_use_read_buffer(ctx);
ASSERT(width < MAX_WIDTH);
_swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer,
width, srcx, sy, span.array->rgba );
if (changeBuffer)
_swrast_use_draw_buffer(ctx);
}
if (transferOps) {
DEFMARRAY(GLfloat, rgbaFloat, MAX_WIDTH, 4); /* mac 32k limitation */
CHECKARRAY(rgbaFloat, return);
/* convert to float, transfer, convert back to chan */
chan_span_to_float(width, (CONST GLchan (*)[4]) span.array->rgba,
rgbaFloat);
_mesa_apply_rgba_transfer_ops(ctx, transferOps, width, rgbaFloat);
float_span_to_chan(width, (CONST GLfloat (*)[4]) rgbaFloat,
span.array->rgba);
UNDEFARRAY(rgbaFloat); /* mac 32k limitation */
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -