📄 patch.cc
字号:
* and determine if patch needs to be subdivided
*--------------------------------------------------------------------------
*/
void
Patch::getstepsize( void )
{
pspec[0].minstepsize = pspec[1].minstepsize = 0;
pspec[0].needsSubdivision = pspec[1].needsSubdivision = 0;
if( mapdesc->isConstantSampling() ) {
// fixed number of samples per patch in each direction
// maxsrate is number of s samples per patch
// maxtrate is number of t samples per patch
pspec[0].getstepsize( mapdesc->maxsrate );
pspec[1].getstepsize( mapdesc->maxtrate );
} else if( mapdesc->isDomainSampling() ) {
// maxsrate is number of s samples per unit s length of domain
// maxtrate is number of t samples per unit t length of domain
pspec[0].getstepsize( mapdesc->maxsrate * pspec[0].range[2] );
pspec[1].getstepsize( mapdesc->maxtrate * pspec[1].range[2] );
} else if( ! needsSampling ) {
pspec[0].singleStep();
pspec[1].singleStep();
} else {
// upper bound on path length between sample points
REAL tmp[MAXORDER][MAXORDER][MAXCOORDS];
const int trstride = sizeof(tmp[0]) / sizeof(REAL);
const int tcstride = sizeof(tmp[0][0]) / sizeof(REAL);
assert( pspec[0].order <= MAXORDER );
/* points have been transformed, therefore they are homogeneous */
int val = mapdesc->project( spts, pspec[0].stride, pspec[1].stride,
&tmp[0][0][0], trstride, tcstride,
pspec[0].order, pspec[1].order );
if( val == 0 ) {
// control points cross infinity, therefore partials are undefined
pspec[0].getstepsize( mapdesc->maxsrate );
pspec[1].getstepsize( mapdesc->maxtrate );
} else {
REAL t1 = mapdesc->getProperty( N_PIXEL_TOLERANCE );
// REAL t2 = mapdesc->getProperty( N_ERROR_TOLERANCE );
pspec[0].minstepsize = ( mapdesc->maxsrate > 0.0 ) ?
(pspec[0].range[2] / mapdesc->maxsrate) : 0.0;
pspec[1].minstepsize = ( mapdesc->maxtrate > 0.0 ) ?
(pspec[1].range[2] / mapdesc->maxtrate) : 0.0;
if( mapdesc->isParametricDistanceSampling() ||
mapdesc->isObjectSpaceParaSampling() ) {
REAL t2;
t2 = mapdesc->getProperty( N_ERROR_TOLERANCE );
// t2 is upper bound on the distance between surface and tessellant
REAL ssv[2], ttv[2];
REAL ss = mapdesc->calcPartialVelocity( ssv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 2, 0, pspec[0].range[2], pspec[1].range[2], 0 );
REAL st = mapdesc->calcPartialVelocity( 0, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 1, pspec[0].range[2], pspec[1].range[2], -1 );
REAL tt = mapdesc->calcPartialVelocity( ttv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 2, pspec[0].range[2], pspec[1].range[2], 1 );
//make sure that ss st and tt are nonnegative:
if(ss <0) ss = -ss;
if(st <0) st = -st;
if(tt <0) tt = -tt;
if( ss != 0.0 && tt != 0.0 ) {
/* printf( "ssv[0] %g ssv[1] %g ttv[0] %g ttv[1] %g\n",
ssv[0], ssv[1], ttv[0], ttv[1] ); */
REAL ttq = sqrtf( (float) ss );
REAL ssq = sqrtf( (float) tt );
REAL ds = sqrtf( 4 * t2 * ttq / ( ss * ttq + st * ssq ) );
REAL dt = sqrtf( 4 * t2 * ssq / ( tt * ssq + st * ttq ) );
pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2];
REAL scutoff = 2.0 * t2 / ( pspec[0].range[2] * pspec[0].range[2]);
pspec[0].sidestep[0] = (ssv[0] > scutoff) ? sqrtf( 2.0 * t2 / ssv[0] ) : pspec[0].range[2];
pspec[0].sidestep[1] = (ssv[1] > scutoff) ? sqrtf( 2.0 * t2 / ssv[1] ) : pspec[0].range[2];
pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2];
REAL tcutoff = 2.0 * t2 / ( pspec[1].range[2] * pspec[1].range[2]);
pspec[1].sidestep[0] = (ttv[0] > tcutoff) ? sqrtf( 2.0 * t2 / ttv[0] ) : pspec[1].range[2];
pspec[1].sidestep[1] = (ttv[1] > tcutoff) ? sqrtf( 2.0 * t2 / ttv[1] ) : pspec[1].range[2];
} else if( ss != 0.0 ) {
REAL x = pspec[1].range[2] * st;
REAL ds = ( sqrtf( x * x + 8.0 * t2 * ss ) - x ) / ss;
pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2];
REAL scutoff = 2.0 * t2 / ( pspec[0].range[2] * pspec[0].range[2]);
pspec[0].sidestep[0] = (ssv[0] > scutoff) ? sqrtf( 2.0 * t2 / ssv[0] ) : pspec[0].range[2];
pspec[0].sidestep[1] = (ssv[1] > scutoff) ? sqrtf( 2.0 * t2 / ssv[1] ) : pspec[0].range[2];
pspec[1].singleStep();
} else if( tt != 0.0 ) {
REAL x = pspec[0].range[2] * st;
REAL dt = ( sqrtf( x * x + 8.0 * t2 * tt ) - x ) / tt;
pspec[0].singleStep();
REAL tcutoff = 2.0 * t2 / ( pspec[1].range[2] * pspec[1].range[2]);
pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2];
pspec[1].sidestep[0] = (ttv[0] > tcutoff) ? sqrtf( 2.0 * t2 / ttv[0] ) : pspec[1].range[2];
pspec[1].sidestep[1] = (ttv[1] > tcutoff) ? sqrtf( 2.0 * t2 / ttv[1] ) : pspec[1].range[2];
} else {
if( 4.0 * t2 > st * pspec[0].range[2] * pspec[1].range[2] ) {
pspec[0].singleStep();
pspec[1].singleStep();
} else {
REAL area = 4.0 * t2 / st;
REAL ds = sqrtf( area * pspec[0].range[2] / pspec[1].range[2] );
REAL dt = sqrtf( area * pspec[1].range[2] / pspec[0].range[2] );
pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2];
pspec[0].sidestep[0] = pspec[0].range[2];
pspec[0].sidestep[1] = pspec[0].range[2];
pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2];
pspec[1].sidestep[0] = pspec[1].range[2];
pspec[1].sidestep[1] = pspec[1].range[2];
}
}
} else if( mapdesc->isPathLengthSampling() ||
mapdesc->isObjectSpacePathSampling()) {
// t1 is upper bound on path length
REAL msv[2], mtv[2];
REAL ms = mapdesc->calcPartialVelocity( msv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 0, pspec[0].range[2], pspec[1].range[2], 0 );
REAL mt = mapdesc->calcPartialVelocity( mtv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 1, pspec[0].range[2], pspec[1].range[2], 1 );
REAL side_scale = 1.0;
if( ms != 0.0 ) {
if( mt != 0.0 ) {
/* REAL d = t1 / ( ms * ms + mt * mt );*/
/* REAL ds = mt * d;*/
REAL ds = t1 / (2.0*ms);
/* REAL dt = ms * d;*/
REAL dt = t1 / (2.0*mt);
pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2];
pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t1 ) ? (side_scale* t1 / msv[0]) : pspec[0].range[2];
pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t1 ) ? (side_scale* t1 / msv[1]) : pspec[0].range[2];
pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2];
pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t1 ) ? (side_scale*t1 / mtv[0]) : pspec[1].range[2];
pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t1 ) ? (side_scale*t1 / mtv[1]) : pspec[1].range[2];
} else {
pspec[0].stepsize = ( t1 < ms * pspec[0].range[2] ) ? (t1 / ms) : pspec[0].range[2];
pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t1 ) ? (t1 / msv[0]) : pspec[0].range[2];
pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t1 ) ? (t1 / msv[1]) : pspec[0].range[2];
pspec[1].singleStep();
}
} else {
if( mt != 0.0 ) {
pspec[0].singleStep();
pspec[1].stepsize = ( t1 < mt * pspec[1].range[2] ) ? (t1 / mt) : pspec[1].range[2];
pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t1 ) ? (t1 / mtv[0]) : pspec[1].range[2];
pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t1 ) ? (t1 / mtv[1]) : pspec[1].range[2];
} else {
pspec[0].singleStep();
pspec[1].singleStep();
}
}
} else if( mapdesc->isSurfaceAreaSampling() ) {
// t is the square root of area
/*
REAL msv[2], mtv[2];
REAL ms = mapdesc->calcPartialVelocity( msv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 0, pspec[0].range[2], pspec[1].range[2], 0 );
REAL mt = mapdesc->calcPartialVelocity( mtv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 1, pspec[0].range[2], pspec[1].range[2], 1 );
if( ms != 0.0 && mt != 0.0 ) {
REAL d = 1.0 / (ms * mt);
t *= M_SQRT2;
REAL ds = t * sqrtf( d * pspec[0].range[2] / pspec[1].range[2] );
REAL dt = t * sqrtf( d * pspec[1].range[2] / pspec[0].range[2] );
pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2];
pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t ) ? (t / msv[0]) : pspec[0].range[2];
pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t ) ? (t / msv[1]) : pspec[0].range[2];
pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2];
pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t ) ? (t / mtv[0]) : pspec[1].range[2];
pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t ) ? (t / mtv[1]) : pspec[1].range[2];
} else {
pspec[0].singleStep();
pspec[1].singleStep();
}
*/
} else {
pspec[0].singleStep();
pspec[1].singleStep();
}
}
}
#ifdef DEBUG
dprintf( "sidesteps %g %g %g %g, stepsize %g %g\n",
pspec[0].sidestep[0], pspec[0].sidestep[1],
pspec[1].sidestep[0], pspec[1].sidestep[1],
pspec[0].stepsize, pspec[1].stepsize );
#endif
if( mapdesc->minsavings != N_NOSAVINGSSUBDIVISION ) {
REAL savings = 1./(pspec[0].stepsize * pspec[1].stepsize) ;
savings-= (2./( pspec[0].sidestep[0] + pspec[0].sidestep[1] )) *
(2./( pspec[1].sidestep[0] + pspec[1].sidestep[1] ));
savings *= pspec[0].range[2] * pspec[1].range[2];
if( savings > mapdesc->minsavings ) {
pspec[0].needsSubdivision = pspec[1].needsSubdivision = 1;
}
}
if( pspec[0].stepsize < pspec[0].minstepsize ) pspec[0].needsSubdivision = 1;
if( pspec[1].stepsize < pspec[1].minstepsize ) pspec[1].needsSubdivision = 1;
needsSampling = (needsSampling ? needsSamplingSubdivision() : 0);
}
void
Patchspec::singleStep()
{
stepsize = sidestep[0] = sidestep[1] = glu_abs(range[2]);
}
void
Patchspec::getstepsize( REAL max ) // max is number of samples for entire patch
{
stepsize = ( max >= 1.0 ) ? range[2] / max : range[2];
if (stepsize < 0.0) {
stepsize = -stepsize;
}
sidestep[0] = sidestep[1] = minstepsize = stepsize;
}
int
Patch::needsSamplingSubdivision( void )
{
return (pspec[0].needsSubdivision || pspec[1].needsSubdivision) ? 1 : 0;
}
int
Patch::needsNonSamplingSubdivision( void )
{
return notInBbox;
}
int
Patch::needsSubdivision( int param )
{
return pspec[param].needsSubdivision;
}
int
Patch::cullCheck( void )
{
if( cullval == CULL_ACCEPT )
cullval = mapdesc->cullCheck( cpts, pspec[0].order, pspec[0].stride,
pspec[1].order, pspec[1].stride );
return cullval;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -