📄 monochain.cc
字号:
{
//printf("case 1\n");
//this<v and prev < v
//delete both edges
vert->isKey = 1;
vert->keyY = keyY;
treeNode* thisNode = TreeNodeFind(searchTree, vert, (Int (*) (void *, void *))compChains);
vert->isKey = 0;
vert->getPrev()->isKey = 1;
vert->getPrev()->keyY = keyY;
treeNode* prevNode = TreeNodeFind(searchTree, vert->getPrev(), (Int (*) (void *, void *))compChains);
vert->getPrev()->isKey = 0;
if(cuspType(dline) == 1)//interior cusp
{
treeNode* leftEdge = TreeNodePredecessor(prevNode);
treeNode* rightEdge = TreeNodeSuccessor(thisNode);
if(leftEdge == NULL || rightEdge == NULL)
{
errOccur = 1;
goto JUMP_HERE;
}
directedLine* leftEdgeDline = ((monoChain* ) leftEdge->key)->find(keyY);
directedLine* rightEdgeDline = ((monoChain* ) rightEdge->key)->find(keyY);
ret_ranges[i] = sweepRangeMake(leftEdgeDline, 1, rightEdgeDline, 1);
}
else /*exterior cusp*/
{
ret_ranges[i] = sweepRangeMake( dline, 1, dlinePrev, 1);
}
searchTree = TreeNodeDeleteSingleNode(searchTree, thisNode);
searchTree = TreeNodeDeleteSingleNode(searchTree, prevNode);
}
else if(isAbove(dline, dline) && isAbove(dline, dlinePrev))
{
//printf("case 2\n");
//insert both edges
treeNode* thisNode = TreeNodeMake(vert);
treeNode* prevNode = TreeNodeMake(vert->getPrev());
vert->isKey = 1;
vert->keyY = keyY;
searchTree = TreeNodeInsert(searchTree, thisNode, (Int (*) (void *, void *))compChains);
vert->isKey = 0;
vert->getPrev()->isKey = 1;
vert->getPrev()->keyY = keyY;
searchTree = TreeNodeInsert(searchTree, prevNode, (Int (*) (void *, void *))compChains);
vert->getPrev()->isKey = 0;
if(cuspType(dline) == 1) //interior cusp
{
//printf("cuspType is 1\n");
treeNode* leftEdge = TreeNodePredecessor(thisNode);
treeNode* rightEdge = TreeNodeSuccessor(prevNode);
if(leftEdge == NULL || rightEdge == NULL)
{
errOccur = 1;
goto JUMP_HERE;
}
//printf("leftEdge is %i, rightEdge is %i\n", leftEdge, rightEdge);
directedLine* leftEdgeDline = ((monoChain*) leftEdge->key)->find(keyY);
directedLine* rightEdgeDline = ((monoChain*) rightEdge->key)->find(keyY);
ret_ranges[i] = sweepRangeMake( leftEdgeDline, 1, rightEdgeDline, 1);
}
else //exterior cusp
{
//printf("cuspType is not 1\n");
ret_ranges[i] = sweepRangeMake(dlinePrev, 1, dline, 1);
}
}
else
{
//printf("%i,%i\n", isAbove(dline, dline), isAbove(dline, dlinePrev));
errOccur = 1;
goto JUMP_HERE;
fprintf(stderr, "error in MC_sweepY\n");
exit(1);
}
}
JUMP_HERE:
//finally clean up space: delete the search tree
TreeNodeDeleteWholeTree(searchTree);
return errOccur;
}
void MC_findDiagonals(Int total_num_edges, monoChain** sortedVertices,
sweepRange** ranges, Int& num_diagonals,
directedLine** diagonal_vertices)
{
Int i,j,k;
k=0;
//reset 'current' of all the monoChains
for(i=0; i<total_num_edges; i++)
sortedVertices[i]->resetCurrent();
for(i=0; i<total_num_edges; i++)
{
directedLine* vert = sortedVertices[i]->getHead();
directedLine* thisEdge = vert;
directedLine* prevEdge = vert->getPrev();
if(isBelow(vert, thisEdge) && isBelow(vert, prevEdge) && compEdges(prevEdge, thisEdge)<0)
{
//this is an upward interior cusp
diagonal_vertices[k++] = vert;
directedLine* leftEdge = ranges[i]->left;
directedLine* rightEdge = ranges[i]->right;
directedLine* leftVert = leftEdge;
directedLine* rightVert = rightEdge->getNext();
assert(leftVert->head()[1] >= vert->head()[1]);
assert(rightVert->head()[1] >= vert->head()[1]);
directedLine* minVert = (leftVert->head()[1] <= rightVert->head()[1])?leftVert:rightVert;
Int found = 0;
for(j=i+1; j<total_num_edges; j++)
{
if(sortedVertices[j]->getHead()->head()[1] > minVert->head()[1])
break;
if(sweepRangeEqual(ranges[i], ranges[j]))
{
found = 1;
break;
}
}
if(found)
diagonal_vertices[k++] = sortedVertices[j]->getHead();
else
diagonal_vertices[k++] = minVert;
}
else if(isAbove(vert, thisEdge) && isAbove(vert, prevEdge) && compEdges(prevEdge, thisEdge)>0)
{
//downward interior cusp
diagonal_vertices[k++] = vert;
directedLine* leftEdge = ranges[i]->left;
directedLine* rightEdge = ranges[i]->right;
directedLine* leftVert = leftEdge->getNext();
directedLine* rightVert = rightEdge;
assert(leftVert->head()[1] <= vert->head()[1]);
assert(rightVert->head()[1] <= vert->head()[1]);
directedLine* maxVert = (leftVert->head()[1] > rightVert->head()[1])? leftVert:rightVert;
Int found=0;
for(j=i-1; j>=0; j--)
{
if(sortedVertices[j]->getHead()->head()[1] < maxVert->head()[1])
break;
if(sweepRangeEqual(ranges[i], ranges[j]))
{
found = 1;
break;
}
}
if(found)
diagonal_vertices[k++] = sortedVertices[j]->getHead();
else
diagonal_vertices[k++] = maxVert;
}
}
num_diagonals = k/2;
}
directedLine* MC_partitionY(directedLine *polygons, sampledLine **retSampledLines)
{
//printf("enter mc_partitionY\n");
Int total_num_chains = 0;
monoChain* loopList = directedLineLoopListToMonoChainLoopList(polygons);
monoChain** array = loopList->toArrayAllLoops(total_num_chains);
if(total_num_chains<=2) //there is just one single monotone polygon
{
loopList->deleteLoopList();
free(array);
*retSampledLines = NULL;
return polygons;
}
//loopList->printAllLoops();
//printf("total_num_chains=%i\n", total_num_chains);
quicksort( (void**)array, 0, total_num_chains-1, (Int (*)(void*, void*))compChainHeadInY);
//printf("after quicksort\n");
sweepRange** ranges = (sweepRange**)malloc(sizeof(sweepRange*) * (total_num_chains));
assert(ranges);
if(MC_sweepY(total_num_chains, array, ranges))
{
loopList->deleteLoopList();
free(array);
*retSampledLines = NULL;
return NULL;
}
//printf("after MC_sweepY\n");
Int num_diagonals;
/*number diagonals is < total_num_edges*total_num_edges*/
directedLine** diagonal_vertices = (directedLine**) malloc(sizeof(directedLine*) * total_num_chains*2/*total_num_edges*/);
assert(diagonal_vertices);
//printf("before call MC_findDiagonales\n");
MC_findDiagonals(total_num_chains, array, ranges, num_diagonals, diagonal_vertices);
//printf("after call MC_findDia, num_diagnla=%i\n", num_diagonals);
directedLine* ret_polygons = polygons;
sampledLine* newSampledLines = NULL;
Int i,k;
num_diagonals=deleteRepeatDiagonals(num_diagonals, diagonal_vertices, diagonal_vertices);
//drawDiagonals(num_diagonals, diagonal_vertices);
//printf("diagoanls are \n");
//for(i=0; i<num_diagonals; i++)
// {
// printf("(%f,%f)\n", diagonal_vertices[2*i]->head()[0], diagonal_vertices[2*i]->head()[1]);
// printf("**(%f,%f)\n", diagonal_vertices[2*i+1]->head()[0], diagonal_vertices[2*i+1]->head()[1]);
// }
Int *removedDiagonals=(Int*)malloc(sizeof(Int) * num_diagonals);
for(i=0; i<num_diagonals; i++)
removedDiagonals[i] = 0;
// printf("first pass\n");
for(i=0,k=0; i<num_diagonals; i++,k+=2)
{
directedLine* v1=diagonal_vertices[k];
directedLine* v2=diagonal_vertices[k+1];
directedLine* ret_p1;
directedLine* ret_p2;
/*we ahve to determine whether v1 and v2 belong to the same polygon before
*their structure are modified by connectDiagonal().
*/
/*
directedLine *root1 = v1->findRoot();
directedLine *root2 = v2->findRoot();
assert(root1);
assert(root2);
*/
directedLine* root1 = v1->rootLinkFindRoot();
directedLine* root2 = v2->rootLinkFindRoot();
if(root1 != root2)
{
removedDiagonals[i] = 1;
sampledLine* generatedLine;
v1->connectDiagonal(v1,v2, &ret_p1, &ret_p2, &generatedLine, ret_polygons);
newSampledLines = generatedLine->insert(newSampledLines);
/*
ret_polygons = ret_polygons->cutoffPolygon(root1);
ret_polygons = ret_polygons->cutoffPolygon(root2);
ret_polygons = ret_p1->insertPolygon(ret_polygons);
root1->rootLinkSet(ret_p1);
root2->rootLinkSet(ret_p1);
ret_p1->rootLinkSet(NULL);
ret_p2->rootLinkSet(ret_p1);
*/
ret_polygons = ret_polygons->cutoffPolygon(root2);
root2->rootLinkSet(root1);
ret_p1->rootLinkSet(root1);
ret_p2->rootLinkSet(root1);
/*now that we have connected the diagonal v1 and v2,
*we have to check those unprocessed diagonals which
*have v1 or v2 as an end point. Notice that the head of v1
*has the same coodinates as the head of v2->prev, and the head of
*v2 has the same coordinate as the head of v1->prev.
*Suppose these is a diagonal (v1, x). If (v1,x) is still a valid
*diagonal, then x should be on the left hand side of the directed line: *v1->prev->head -- v1->head -- v1->tail. Otherwise, (v1,x) should be
*replaced by (v2->prev, x), that is, x is on the left of
* v2->prev->prev->head, v2->prev->head, v2->prev->tail.
*/
Int ii, kk;
for(ii=0, kk=0; ii<num_diagonals; ii++, kk+=2)
if( removedDiagonals[ii]==0)
{
directedLine* d1=diagonal_vertices[kk];
directedLine* d2=diagonal_vertices[kk+1];
/*check d1, and replace diagonal_vertices[kk] if necessary*/
if(d1 == v1) {
/*check if d2 is to left of v1->prev->head:v1->head:v1->tail*/
if(! pointLeft2Lines(v1->getPrev()->head(),
v1->head(), v1->tail(), d2->head()))
{
/*
assert(pointLeft2Lines(v2->getPrev()->getPrev()->head(),
v2->getPrev()->head(),
v2->getPrev()->tail(), d2->head()));
*/
diagonal_vertices[kk] = v2->getPrev();
}
}
if(d1 == v2) {
/*check if d2 is to left of v2->prev->head:v2->head:v2->tail*/
if(! pointLeft2Lines(v2->getPrev()->head(),
v2->head(), v2->tail(), d2->head()))
{
/*
assert(pointLeft2Lines(v1->getPrev()->getPrev()->head(),
v1->getPrev()->head(),
v1->getPrev()->tail(), d2->head()));
*/
diagonal_vertices[kk] = v1->getPrev();
}
}
/*check d2 and replace diagonal_vertices[k+1] if necessary*/
if(d2 == v1) {
/*check if d1 is to left of v1->prev->head:v1->head:v1->tail*/
if(! pointLeft2Lines(v1->getPrev()->head(),
v1->head(), v1->tail(), d1->head()))
{
/* assert(pointLeft2Lines(v2->getPrev()->getPrev()->head(),
v2->getPrev()->head(),
v2->getPrev()->tail(), d1->head()));
*/
diagonal_vertices[kk+1] = v2->getPrev();
}
}
if(d2 == v2) {
/*check if d1 is to left of v2->prev->head:v2->head:v2->tail*/
if(! pointLeft2Lines(v2->getPrev()->head(),
v2->head(), v2->tail(), d1->head()))
{
/* assert(pointLeft2Lines(v1->getPrev()->getPrev()->head(),
v1->getPrev()->head(),
v1->getPrev()->tail(), d1->head()));
*/
diagonal_vertices[kk+1] = v1->getPrev();
}
}
}
}/*end if (root1 not equal to root 2)*/
}
/*second pass, now all diagoals should belong to the same polygon*/
//printf("second pass: \n");
// for(i=0; i<num_diagonals; i++)
// printf("%i ", removedDiagonals[i]);
for(i=0,k=0; i<num_diagonals; i++, k += 2)
if(removedDiagonals[i] == 0)
{
directedLine* v1=diagonal_vertices[k];
directedLine* v2=diagonal_vertices[k+1];
directedLine* ret_p1;
directedLine* ret_p2;
/*we ahve to determine whether v1 and v2 belong to the same polygon before
*their structure are modified by connectDiagonal().
*/
directedLine *root1 = v1->findRoot();
/*
directedLine *root2 = v2->findRoot();
assert(root1);
assert(root2);
assert(root1 == root2);
*/
sampledLine* generatedLine;
v1->connectDiagonal(v1,v2, &ret_p1, &ret_p2, &generatedLine, ret_polygons);
newSampledLines = generatedLine->insert(newSampledLines);
ret_polygons = ret_polygons->cutoffPolygon(root1);
ret_polygons = ret_p1->insertPolygon(ret_polygons);
ret_polygons = ret_p2->insertPolygon(ret_polygons);
for(Int j=i+1; j<num_diagonals; j++)
{
if(removedDiagonals[j] ==0)
{
directedLine* temp1=diagonal_vertices[2*j];
directedLine* temp2=diagonal_vertices[2*j+1];
if(temp1==v1 || temp1==v2 || temp2==v1 || temp2==v2)
if(! temp1->samePolygon(temp1, temp2))
{
/*if temp1 and temp2 are in different polygons,
*then one of them must be v1 or v2.
*/
assert(temp1==v1 || temp1 == v2 || temp2==v1 || temp2 ==v2);
if(temp1==v1)
{
diagonal_vertices[2*j] = v2->getPrev();
}
if(temp2==v1)
{
diagonal_vertices[2*j+1] = v2->getPrev();
}
if(temp1==v2)
{
diagonal_vertices[2*j] = v1->getPrev();
}
if(temp2==v2)
{
diagonal_vertices[2*j+1] = v1->getPrev();
}
}
}
}
}
//clean up
loopList->deleteLoopList();
free(array);
free(ranges);
free(diagonal_vertices);
free(removedDiagonals);
*retSampledLines = newSampledLines;
return ret_polygons;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -