⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 monochain.cc

📁 winNT技术操作系统,国外开放的原代码和LIUX一样
💻 CC
📖 第 1 页 / 共 2 页
字号:
	{
//printf("case 1\n");
	  //this<v and prev < v
	  //delete both edges
	  vert->isKey = 1;
	  vert->keyY = keyY;
	  treeNode* thisNode = TreeNodeFind(searchTree, vert, (Int (*) (void *, void *))compChains);
	  vert->isKey = 0;

	  vert->getPrev()->isKey = 1;
	  vert->getPrev()->keyY = keyY;
	  treeNode* prevNode = TreeNodeFind(searchTree, vert->getPrev(), (Int (*) (void *, void *))compChains);
	  vert->getPrev()->isKey = 0;

	  if(cuspType(dline) == 1)//interior cusp
	    {

	      treeNode* leftEdge = TreeNodePredecessor(prevNode);
	      treeNode* rightEdge = TreeNodeSuccessor(thisNode);
	      if(leftEdge == NULL ||  rightEdge == NULL)
		{
		  errOccur = 1;
		  goto JUMP_HERE;
		}

	      directedLine* leftEdgeDline = ((monoChain* ) leftEdge->key)->find(keyY);



	      directedLine* rightEdgeDline = ((monoChain* ) rightEdge->key)->find(keyY);

	      ret_ranges[i] = sweepRangeMake(leftEdgeDline, 1, rightEdgeDline, 1);
	    }
	  else /*exterior cusp*/
	    {
	      ret_ranges[i] = sweepRangeMake( dline, 1, dlinePrev, 1);
	    }

	  searchTree = TreeNodeDeleteSingleNode(searchTree, thisNode);
	  searchTree = TreeNodeDeleteSingleNode(searchTree, prevNode);

	}
      else if(isAbove(dline, dline) && isAbove(dline, dlinePrev))
	{
//printf("case 2\n");
	  //insert both edges
	  treeNode* thisNode = TreeNodeMake(vert);
	  treeNode* prevNode = TreeNodeMake(vert->getPrev());
	  
	  vert->isKey = 1;
          vert->keyY = keyY;
	  searchTree = TreeNodeInsert(searchTree, thisNode, (Int (*) (void *, void *))compChains);
          vert->isKey = 0;

          vert->getPrev()->isKey = 1;
          vert->getPrev()->keyY = keyY;
	  searchTree = TreeNodeInsert(searchTree, prevNode, (Int (*) (void *, void *))compChains);
          vert->getPrev()->isKey = 0;

	  if(cuspType(dline) == 1) //interior cusp
	    {
//printf("cuspType is 1\n");
	      treeNode* leftEdge = TreeNodePredecessor(thisNode);
	      treeNode* rightEdge = TreeNodeSuccessor(prevNode);
              if(leftEdge == NULL || rightEdge == NULL)
		{
		  errOccur = 1;
		  goto JUMP_HERE;
		}
//printf("leftEdge is %i, rightEdge is %i\n", leftEdge, rightEdge);
	      directedLine* leftEdgeDline = ((monoChain*) leftEdge->key)->find(keyY);
	      directedLine* rightEdgeDline = ((monoChain*) rightEdge->key)->find(keyY);
	      ret_ranges[i] = sweepRangeMake( leftEdgeDline, 1, rightEdgeDline, 1);
	    }
	  else //exterior cusp
	    {
//printf("cuspType is not 1\n");
	      ret_ranges[i] = sweepRangeMake(dlinePrev, 1, dline, 1);
	    }
	}
      else
	{	  
//printf("%i,%i\n", isAbove(dline, dline), isAbove(dline, dlinePrev));
	  errOccur = 1;
	  goto JUMP_HERE;
      
	  fprintf(stderr, "error in MC_sweepY\n");
	  exit(1);
	}
    }

 JUMP_HERE:
  //finally clean up space: delete  the search tree
  TreeNodeDeleteWholeTree(searchTree);
  return errOccur;
}
	  
void MC_findDiagonals(Int total_num_edges, monoChain** sortedVertices,
		   sweepRange** ranges, Int& num_diagonals, 
		   directedLine** diagonal_vertices)
{
  Int i,j,k;
  k=0;
  //reset 'current' of all the monoChains
  for(i=0; i<total_num_edges; i++)
    sortedVertices[i]->resetCurrent();
  
  for(i=0; i<total_num_edges; i++)
    {
      directedLine* vert = sortedVertices[i]->getHead();
      directedLine* thisEdge = vert;
      directedLine* prevEdge = vert->getPrev();
      if(isBelow(vert, thisEdge) && isBelow(vert, prevEdge) && compEdges(prevEdge, thisEdge)<0)
	{
	  //this is an upward interior cusp
	  diagonal_vertices[k++] = vert;

	  directedLine* leftEdge = ranges[i]->left;
	  directedLine* rightEdge = ranges[i]->right;
	  
	  directedLine* leftVert = leftEdge;
	  directedLine* rightVert = rightEdge->getNext();
	  assert(leftVert->head()[1] >= vert->head()[1]);
	  assert(rightVert->head()[1] >= vert->head()[1]);
	  directedLine* minVert = (leftVert->head()[1] <= rightVert->head()[1])?leftVert:rightVert;
	  Int found = 0;
	  for(j=i+1; j<total_num_edges; j++)
	    {
	      if(sortedVertices[j]->getHead()->head()[1] > minVert->head()[1])
		break;
	      
	      if(sweepRangeEqual(ranges[i], ranges[j]))
		{
		  found = 1;
		  break;
		}
	    }

	  if(found)
	    diagonal_vertices[k++] = sortedVertices[j]->getHead();
	  else
	    diagonal_vertices[k++] = minVert;
	}	  
      else if(isAbove(vert, thisEdge) && isAbove(vert, prevEdge) && compEdges(prevEdge, thisEdge)>0)
	{
	  //downward interior cusp
	  diagonal_vertices[k++] = vert;
	  directedLine* leftEdge = ranges[i]->left;
	  directedLine* rightEdge = ranges[i]->right;
	  directedLine* leftVert = leftEdge->getNext();
	  directedLine* rightVert = rightEdge;
	  assert(leftVert->head()[1] <= vert->head()[1]);
	  assert(rightVert->head()[1] <= vert->head()[1]);
	  directedLine* maxVert = (leftVert->head()[1] > rightVert->head()[1])? leftVert:rightVert;
	  Int found=0;
	  for(j=i-1; j>=0; j--)
	    {
	      if(sortedVertices[j]->getHead()->head()[1] < maxVert->head()[1])
		break;
	      if(sweepRangeEqual(ranges[i], ranges[j]))
		{
		  found = 1;
		  break;
		}
	    }
	  if(found)
	    diagonal_vertices[k++] = sortedVertices[j]->getHead();
	  else
	    diagonal_vertices[k++] = maxVert;
	}
    }
  num_diagonals = k/2;
}
	  
	  
	    

directedLine* MC_partitionY(directedLine *polygons, sampledLine **retSampledLines)
{
//printf("enter mc_partitionY\n");
  Int total_num_chains = 0;
  monoChain* loopList = directedLineLoopListToMonoChainLoopList(polygons);
  monoChain** array = loopList->toArrayAllLoops(total_num_chains);

  if(total_num_chains<=2) //there is just one single monotone polygon
    {
      loopList->deleteLoopList();
      free(array); 
      *retSampledLines = NULL;
      return polygons;
    }

//loopList->printAllLoops();
//printf("total_num_chains=%i\n", total_num_chains);
  quicksort( (void**)array, 0, total_num_chains-1, (Int (*)(void*, void*))compChainHeadInY);
//printf("after quicksort\n");  

  sweepRange** ranges = (sweepRange**)malloc(sizeof(sweepRange*) * (total_num_chains));
  assert(ranges);

  if(MC_sweepY(total_num_chains, array, ranges))
    {
      loopList->deleteLoopList();
      free(array); 
      *retSampledLines = NULL;
      return NULL;
    }
//printf("after MC_sweepY\n");


  Int num_diagonals;
  /*number diagonals is < total_num_edges*total_num_edges*/
  directedLine** diagonal_vertices = (directedLine**) malloc(sizeof(directedLine*) * total_num_chains*2/*total_num_edges*/);
  assert(diagonal_vertices);

//printf("before call MC_findDiagonales\n");

  MC_findDiagonals(total_num_chains, array, ranges, num_diagonals, diagonal_vertices);
//printf("after call MC_findDia, num_diagnla=%i\n", num_diagonals);

  directedLine* ret_polygons = polygons;
  sampledLine* newSampledLines = NULL;
  Int i,k;

  num_diagonals=deleteRepeatDiagonals(num_diagonals, diagonal_vertices, diagonal_vertices);



//drawDiagonals(num_diagonals, diagonal_vertices);
//printf("diagoanls are \n");
//for(i=0; i<num_diagonals; i++)
//  {
//    printf("(%f,%f)\n", diagonal_vertices[2*i]->head()[0], diagonal_vertices[2*i]->head()[1]);
//    printf("**(%f,%f)\n", diagonal_vertices[2*i+1]->head()[0], diagonal_vertices[2*i+1]->head()[1]);
//  }

  Int *removedDiagonals=(Int*)malloc(sizeof(Int) * num_diagonals);
  for(i=0; i<num_diagonals; i++)
    removedDiagonals[i] = 0;
//  printf("first pass\n");


 for(i=0,k=0; i<num_diagonals; i++,k+=2)
    {


      directedLine* v1=diagonal_vertices[k];
      directedLine* v2=diagonal_vertices[k+1];
      directedLine* ret_p1;
      directedLine* ret_p2;
      
      /*we ahve to determine whether v1 and v2 belong to the same polygon before
       *their structure are modified by connectDiagonal().
       */
/*
      directedLine *root1 = v1->findRoot();
      directedLine *root2 = v2->findRoot();
      assert(root1);      
      assert(root2);
*/

directedLine*  root1 = v1->rootLinkFindRoot();
directedLine*  root2 = v2->rootLinkFindRoot();

      if(root1 != root2)
	{

	  removedDiagonals[i] = 1;
	  sampledLine* generatedLine;



	  v1->connectDiagonal(v1,v2, &ret_p1, &ret_p2, &generatedLine, ret_polygons);



	  newSampledLines = generatedLine->insert(newSampledLines);
/*
	  ret_polygons = ret_polygons->cutoffPolygon(root1);

	  ret_polygons = ret_polygons->cutoffPolygon(root2);
	  ret_polygons = ret_p1->insertPolygon(ret_polygons);
root1->rootLinkSet(ret_p1);
root2->rootLinkSet(ret_p1);
ret_p1->rootLinkSet(NULL);
ret_p2->rootLinkSet(ret_p1);
*/
	  ret_polygons = ret_polygons->cutoffPolygon(root2);



root2->rootLinkSet(root1);
ret_p1->rootLinkSet(root1);
ret_p2->rootLinkSet(root1);

       /*now that we have connected the diagonal v1 and v2, 
        *we have to check those unprocessed diagonals which 
        *have v1 or v2 as an end point. Notice that the head of v1
        *has the same coodinates as the head of v2->prev, and the head of
        *v2 has the same coordinate as the head of v1->prev. 
        *Suppose these is a diagonal (v1, x). If (v1,x) is still a valid
        *diagonal, then x should be on the left hand side of the directed line:        *v1->prev->head -- v1->head -- v1->tail. Otherwise, (v1,x) should be  
        *replaced by (v2->prev, x), that is, x is on the left of 
        * v2->prev->prev->head, v2->prev->head, v2->prev->tail.
        */
        Int ii, kk;
        for(ii=0, kk=0; ii<num_diagonals; ii++, kk+=2)
	  if( removedDiagonals[ii]==0)
	    {
	      directedLine* d1=diagonal_vertices[kk];
	      directedLine* d2=diagonal_vertices[kk+1];
	      /*check d1, and replace diagonal_vertices[kk] if necessary*/
	      if(d1 == v1) {
		/*check if d2 is to left of v1->prev->head:v1->head:v1->tail*/
		if(! pointLeft2Lines(v1->getPrev()->head(), 
				     v1->head(), v1->tail(), d2->head()))
		  {
/*
		    assert(pointLeft2Lines(v2->getPrev()->getPrev()->head(),
					   v2->getPrev()->head(), 
					   v2->getPrev()->tail(), d2->head()));
*/
		    diagonal_vertices[kk] = v2->getPrev();
		  }
	      }
	      if(d1 == v2) {
		/*check if d2 is to left of v2->prev->head:v2->head:v2->tail*/
		if(! pointLeft2Lines(v2->getPrev()->head(),
				     v2->head(), v2->tail(), d2->head()))
		  {
/*
		    assert(pointLeft2Lines(v1->getPrev()->getPrev()->head(),
					   v1->getPrev()->head(),
					   v1->getPrev()->tail(), d2->head()));
*/
		    diagonal_vertices[kk] = v1->getPrev();
		  }
	      }
	      /*check d2 and replace diagonal_vertices[k+1] if necessary*/
	      if(d2 == v1) {
		/*check if d1 is to left of v1->prev->head:v1->head:v1->tail*/
		if(! pointLeft2Lines(v1->getPrev()->head(), 
				     v1->head(), v1->tail(), d1->head()))
		  {
/*		    assert(pointLeft2Lines(v2->getPrev()->getPrev()->head(),
					   v2->getPrev()->head(), 
					   v2->getPrev()->tail(), d1->head()));
*/
		    diagonal_vertices[kk+1] = v2->getPrev();
		  }
	      }
	      if(d2 == v2) {
		/*check if d1 is to left of v2->prev->head:v2->head:v2->tail*/
		if(! pointLeft2Lines(v2->getPrev()->head(),
				     v2->head(), v2->tail(), d1->head()))
		  {
/*		    assert(pointLeft2Lines(v1->getPrev()->getPrev()->head(),
					   v1->getPrev()->head(),
					   v1->getPrev()->tail(), d1->head()));
*/
		    diagonal_vertices[kk+1] = v1->getPrev();
		  }
	      }
	    }					    	       
}/*end if (root1 not equal to root 2)*/
}

  /*second pass,  now all diagoals should belong to the same polygon*/
//printf("second pass: \n");

//  for(i=0; i<num_diagonals; i++)
//    printf("%i ", removedDiagonals[i]);


  for(i=0,k=0; i<num_diagonals; i++, k += 2)
    if(removedDiagonals[i] == 0) 
      {


	directedLine* v1=diagonal_vertices[k];
	directedLine* v2=diagonal_vertices[k+1];



	directedLine* ret_p1;
	directedLine* ret_p2;

	/*we ahve to determine whether v1 and v2 belong to the same polygon before
	 *their structure are modified by connectDiagonal().
	 */
	directedLine *root1 = v1->findRoot();
/*
	directedLine *root2 = v2->findRoot();



	assert(root1);      
	assert(root2);      
	assert(root1 == root2);
  */    
	sampledLine* generatedLine;



	v1->connectDiagonal(v1,v2, &ret_p1, &ret_p2, &generatedLine, ret_polygons);
	newSampledLines = generatedLine->insert(newSampledLines);

	ret_polygons = ret_polygons->cutoffPolygon(root1);

	ret_polygons = ret_p1->insertPolygon(ret_polygons);

	ret_polygons = ret_p2->insertPolygon(ret_polygons);



	for(Int j=i+1; j<num_diagonals; j++) 
	  {
	    if(removedDiagonals[j] ==0)
	      {

		directedLine* temp1=diagonal_vertices[2*j];
		directedLine* temp2=diagonal_vertices[2*j+1];
               if(temp1==v1 || temp1==v2 || temp2==v1 || temp2==v2)
		if(! temp1->samePolygon(temp1, temp2))
		  {
		    /*if temp1 and temp2 are in different polygons, 
		     *then one of them must be v1 or v2.
		     */



		    assert(temp1==v1 || temp1 == v2 || temp2==v1 || temp2 ==v2);
		    if(temp1==v1) 
		      {
			diagonal_vertices[2*j] = v2->getPrev();
		      }
		    if(temp2==v1)
		      {
			diagonal_vertices[2*j+1] = v2->getPrev();
		      }
		    if(temp1==v2)
		      {
			diagonal_vertices[2*j] = v1->getPrev();		      
		      }
		    if(temp2==v2)
		      {
			diagonal_vertices[2*j+1] = v1->getPrev();
		      }
		  }
	      }
	  }      

      }


  //clean up
  loopList->deleteLoopList();
  free(array);
  free(ranges);
  free(diagonal_vertices);
  free(removedDiagonals);

  *retSampledLines = newSampledLines;
  return ret_polygons;
}
      

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -