⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 corrot.m,v

📁 具有特色的地震数据处理源码
💻 M,V
字号:
head	3.0;access;symbols;locks; strict;comment	@// @;3.0date	2000.06.13.19.19.57;	author gilles;	state Exp;branches;next	2.0;2.0date	99.05.21.18.45.20;	author mah;	state Exp;branches;next	1.5;1.5date	99.02.23.15.33.23;	author kay;	state Exp;branches;next	1.4;1.4date	99.02.22.20.39.44;	author kay;	state Exp;branches;next	1.3;1.3date	99.02.19.16.17.50;	author kay;	state Exp;branches;next	1.2;1.2date	99.02.19.15.20.26;	author kay;	state Exp;branches;next	1.1;1.1date	99.02.19.14.56.17;	author kay;	state Exp;branches;next	;desc@correlation matrix method@3.0log@Release 3@text@function [dataout]=corrot(datain,headw1,tint,comp1,comp2)%corrot -> function to rotate components of 3-C borehole data (DSI etc.)%into radial and transverse components using matrix eigenvalue algorithm.%%function [dataout]=corrot(datain,headw1,tint,comp1,comp2)%%%INPUT VARIABLES%'datain' must be in official DSI data format%Each record must represent a component h1, h2, or z.%This can be achieved using 'sortrec'.%%headw1 = 	header word containing first break picks%tint =     half width of time window to use around first breaks (s)%comp1 =    record representing one of the components to be rotated%comp2 =    record number of other component to be rotated%%OUTPUT VARIABLES%Trace header word 4 contains component information.%This word will be incremented by 3 for components that have%been rotated.%%By convention: h1=>1; h2=>2; z=>3; radial or oriented horizontal=>4;%transverse horizontal=>5; direct P-arrival (Pd)=>6; orthoganal%component to Pd=>7 (see Handbook of Geophysical Exploration, sect.1,vol.14B).  %Components 6 and 7 are the results of rotating 3 and 4; 4 and 5 are%the results of rotating 1 and 2.%The largest singular value of the covarience matrix is stored in header%word 10, and the ratio of sigular value 2 to singular value 1 is stored %in word 11.%%DSI customized VSP processing software%by I. Kay and G. Perron (Jan 1998)%$Id: corrot.m,v 2.0 1999/05/21 18:45:20 mah Exp gilles $%$Log: corrot.m,v $%Revision 2.0  1999/05/21 18:45:20  mah%Release 2%%Revision 1.5  1999/02/23 15:33:23  kay%Using matlab's cov is a bad idea here...%%Revision 1.2  1999/01/28 14:07:30  kay%Added svd(1) to header word 10 and ratio of svd(2)/svd(1) to word 11.%%Revision 1.1  1999/01/06 19:09:07  kay%Initial revision%%%Copyright (C) 1998 Seismology and Electromagnetic Section/%Continental Geosciences Division/Geological Survey of Canada%%This library is free software; you can redistribute it and/or%modify it under the terms of the GNU Library General Public%License as published by the Free Software Foundation; either%version 2 of the License, or (at your option) any later version.%%This library is distributed in the hope that it will be useful,%but WITHOUT ANY WARRANTY; without even the implied warranty of%MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU%Library General Public License for more details.%%You should have received a copy of the GNU Library General Public%License along with this library; if not, write to the%Free Software Foundation, Inc., 59 Temple Place - Suite 330,%Boston, MA  02111-1307, USA.%%DSI Consortium%Continental Geosciences Division%Geological Survey of Canada%615 Booth St.%Ottawa, Ontario%K1A 0E9%%email: dsi@@cg.nrcan.gc.cadisp('[dataout]=corrot(datain,headw1,tint,comp1,comp2)');%check to make sure data is separated into componentsfor i=3:-1:1 %get number of traces in each component ntr(i)=datain.th{i}(12,1);end %forif (ntr(1)~=ntr(2)) | (ntr(1)~=ntr(3)) error('check data format - different number of traces in components');end%ifif length(datain.dat)~=3 error('data must have only 3 records - one for each of x, y and z');end %if%***********************************************************************%w=180/pi;tstart=datain.fh{9}; %start time in secondsint=datain.fh{8}; %sampling interval in secondsnsamp=datain.fh{7}; %number of points per tracedataout=datain;a=comp1;b=comp2;ntr=ntr(1);%increment component trace header worddataout.th{a}(4,:)=datain.th{a}(4,:)+3;dataout.th{b}(4,:)=datain.th{b}(4,:)+3;ca=dataout.th{a}(4,1);cb=dataout.th{b}(4,1);rotang=zeros(1,ntr); %initialize variable for angles%only want to rotate picked tracestraces=find(datain.th{a}(headw1,:)~=0);for j=traces	samp1=round((datain.th{a}(headw1,j)-tstart)/int-(tint/int)) +1;	if samp1<1	samp1=1;	end %if	samp2=samp1+2.*round(tint/int) +1;% I've decided that cov() is bad.  It removes the mean, so if the%window of data does not have a zero mean, the relative%amplitudes/energies between traces will change, biasing the result.    %corrmat=cov(datain.dat{a}(samp1:samp2,j),datain.dat{b}(samp1:samp2,j));%instead, use the raw data...   v1=datain.dat{a}(samp1:samp2,j);   v2=datain.dat{b}(samp1:samp2,j);   corrmat=[ dot(v1,v1) dot(v1,v2); dot(v2,v1) dot(v2,v2)];%For a linearly polarized waveform with source signature w(t), arriving at% an angle \phi from H1 (x), the observed data is %		u=w(t)[\cos(\phi) \hat{x} + \sin(\phi) \hat{y}]% The covarience matrix [ <x,x>, <x,y>, <y,x>, <y,y>] is then of the form% [ (\cos(\phi))^2, \cos(\phi)*\sin(\phi); %     \cos(\phi)*\sin(\phi), (\sin(\phi))^2]% \phi can be estimated from the elements of the covarience matrix as:   rotang(j)=atan2(corrmat(1,2),corrmat(1,1));   rotmat=[cos(rotang(j)) -sin(rotang(j)); sin(rotang(j)) cos(rotang(j))];   rotdata=(rotmat'*[datain.dat{a}(:,j) datain.dat{b}(:,j)]')';   dataout.dat{a}(:,j)=rotdata(:,1); %rotated h1 component   dataout.dat{b}(:,j)=rotdata(:,2); %rotated h2 componentend %for j=tracefirsttr=traces(1);pilotsamp1=round((datain.th{a}(headw1,firsttr)-tstart)/int-(tint/int)) +1;if pilotsamp1<1	pilotsamp1=1;end %ifpilotsamp2=pilotsamp1+2.*round(tint/int)+1;pilot=dataout.dat{a}(pilotsamp1:pilotsamp2,1);for j=traces  samp1=round((datain.th{a}(headw1,j)-tstart)/int-(tint/int)) +1;  if samp1<1     samp1=1;  end %if  samp2=samp1+(pilotsamp2-pilotsamp1);  corrmat=cov(pilot, dataout.dat{a}(samp1:samp2,j));  %v2=dataout.dat{a}(samp1:samp2,j);  %corrmat=[ dot(pilot,pilot) dot(pilot, v2); dot(v2, pilot) dot(v2,v2)];  if  corrmat(1,2) < 0.     rotang(j)=rotang(j)+pi;     dataout.dat{a}(:,j)=dataout.dat{a}(:,j).*-1. ;     dataout.dat{b}(:,j)=dataout.dat{b}(:,j).*-1. ;  end %ifend %for j=tracesdataout.th{a}(5,:)=mod(rotang*180/pi+360,360);dataout.th{b}(5,:)=mod(rotang*180/pi+360,360);@2.0log@Release 2@text@d36 1a36 1%$Id: corrot.m,v 1.5 1999/02/23 15:33:23 kay Exp mah $d38 3@1.5log@Using matlab's cov is a bad idea here...@text@d36 1a36 1%$Id: corrot.m,v 1.2 1999/01/28 14:07:30 kay Exp $d38 3@1.4log@First version in which I have some real confidence...@text@d15 3a17 4%tint =         time window to use around first breaks (s)%(window starts 'tint' sec. before pick and ends 'tint' sec. after pick%comp1 =        record representing one of the components to be rotated%comp2 =        record number of other component to be rotatedd108 25a132 10   samp1=round((datain.th{a}(headw1,j)-tstart)/int-(tint/int)) +1;   if samp1<1      samp1=1;   end %if   samp2=samp1+2.*round(tint/int) +1;   %v1=datain.dat{a}(samp1:samp2,j);   %v2=datain.dat{b}(samp1:samp2,j);   %corrmat=[ dot(v1,v1) dot(v1,v2); dot(v2,v1) dot(v2,v2)];   corrmat=cov(datain.dat{a}(samp1:samp2,j),datain.dat{b}(samp1:samp2,j)); d134 1@1.3log@added a cross correlation of the first trace with all other traces.If the cross correlation is negative, then multiply the trace by -1 andadd 180 to the rotation angle.@text@d89 1a89 1w=180/pi;d114 8d123 2a124 1  corrmat=cov(datain.dat{a}(samp1:samp2,j),datain.dat{b}(samp1:samp2,j));a125 3  rotang(j)=-atan2(corrmat(1,2),corrmat(1,1));  rotmat=[cos(rotang(j)) sin(rotang(j)); -sin(rotang(j)) cos(rotang(j))];  rotdata=(rotmat'*[datain.dat{a}(:,j) datain.dat{b}(:,j)]')';d127 3a129 7  dataout.dat{a}(:,j)=rotdata(:,1); %rotated h1 component  dataout.dat{b}(:,j)=rotdata(:,2); %rotated h2 componentend %for j=tracespilotsamp1=round((datain.th{a}(headw1,j)-tstart)/int-(tint/int)) +1;d137 8a144 8   samp1=round((datain.th{a}(headw1,j)-tstart)/int-(tint/int)) +1;   if samp1<1      samp1=1;   end %if   samp2=samp1+(pilotsamp2-pilotsamp1);  % size(pilot)
   %size(datain.dat{a}(samp1:samp2,j))  corrmat=cov(pilot, datain.dat{a}(samp1:samp2,j));d146 3a148 3  	rotang(j)=-rotang(j);	dataout.dat{a}(:,j)=dataout.dat{a}(:,j).*-1. ;	dataout.dat{b}(:,j)=dataout.dat{b}(:,j).*-1. ;d151 2a152 3dataout.th{a}(5,:)=rotang;dataout.th{b}(5,:)=rotang;@1.2log@*** empty log message ***@text@d4 1a4 1%into radial and transverse components using crosscorrelation matrix.d37 1a37 1%$Id: corrot.m,v 1.1 1999/02/19 14:56:17 kay Exp $d39 4a42 1%Revision 1.1  1999/02/19 14:56:17  kaya44 1d117 2a118 2  rotang(j)=atan2(corrmat(1,2),corrmat(1,1));  rotmat=[cos(rotang(j)) -sin(rotang(j)); sin(rotang(j)) cos(rotang(j))];d124 24a147 1 @1.1log@Initial revision@text@d37 5a41 2%$Id: $%$Log:$d115 2a116 2  rotang(j)=-atan2(corrmat(1,2),corrmat(1,1));  rotmat=[cos(rotang(j)) sin(rotang(j)); -sin(rotang(j)) cos(rotang(j))];@

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -