📄 rot3c.m,v
字号:
head 3.0;access;symbols;locks; strict;comment @// @;3.0date 2000.06.13.19.21.12; author gilles; state Exp;branches;next 2.1;2.1date 2000.06.13.15.51.30; author gilles; state Exp;branches;next 2.0;2.0date 99.05.21.18.46.20; author mah; state Exp;branches;next 1.7;1.7date 99.05.19.21.03.02; author mah; state Exp;branches;next 1.6;1.6date 99.03.18.19.47.09; author mah; state Exp;branches;next 1.5;1.5date 99.02.22.22.24.26; author mah; state Exp;branches;next 1.4;1.4date 99.02.22.20.38.38; author mah; state Exp;branches;next 1.3;1.3date 99.02.22.20.12.24; author mah; state Exp;branches;next 1.2;1.2date 99.02.22.19.48.27; author mah; state Exp;branches;next 1.1;1.1date 99.02.22.19.16.20; author mah; state Exp;branches;next ;desc@rotate data by using 1 degree slices@3.0log@Release 3@text@function [dataout]=rot3c(datain,headw1,tstart,tend,comp1,comp2)%rot3c - function to rotate horizontal components for borehole data (DSI etc.) %into radial and transverse components%It is done by performing 1 degree increments in rotation and then checking for the best rotation%%function [dataout]=rot3c(datain,headw1,tstart,tend,comp1,comp2)%%INPUT VARIABLES%'datain' must be in official DSI data format%each record must represent a component x, y, or z in that order%this can be achieved using 'sortrec'%% headw1 = header word containing first break picks% tstart and tend = time interval before and after first breaks in seconds to be analyzed for proper rotation% comp1 = component to be maximized% comp2 = component to be minimized%% Please note: Software does not check for reasonable parameters or dead traces%%DSIsoft ver 2.0%DSI customized VSP processing software%%by G. Perron (Nov 15th, 1996)%based on rot3c_dirp from S. Guest and D. Eaton+%Rewritten by Marko Mah February 1999%$Id: rot3c.m,v 2.1 2000/06/13 15:51:30 gilles Exp gilles $%$Log: rot3c.m,v $%Revision 2.1 2000/06/13 15:51:30 gilles%*** empty log message ***%%Revision 2.0 1999/05/21 18:46:20 mah%Release 2%%Revision 1.7 1999/05/19 21:03:02 mah%version number%%Revision 1.6 1999/03/18 19:47:09 mah%made it more flexible by changing tint to tstart and tend%%Revision 1.5 1999/02/22 22:24:26 mah%made it more robust%%Revision 1.4 1999/02/22 20:38:38 mah%speed it up%%Revision 1.3 1999/02/22 20:12:24 mah%changed sign convention in rotation to make in line with current practice%%Revision 1.2 1999/02/22 19:48:27 mah%made program more flexible%%Revision 1.1 1999/02/22 19:16:20 mah%Initial revision%%%%Copyright (C) 1998 Seismology and Electromagnet+ic Section/%Continental Geosciences Division/Geological Survey of Canada%%This library is free software; you can redistribute it and/or%modify it under the terms of the GNU Library General Public%License as published by the Free Software Foundation; either%version 2 of the License, or (at your option) any later version.%%This library is distributed in the hope that it will be useful,%but WITHOUT ANY WARRANTY; without even the implied warranty of%MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU%Library General Public License for more details.%%You should have received a copy of the GNU Library General Public%License along with this library; if not, write to the%Free Software Foundation, Inc., 59 Temple Place - Suite 330,%Boston, MA 02111-1307, USA.%%DSI Consortium%Continental Geosciences Division%Geological Survey of Canada%615 Booth St.%Ottawa, Ontario%K1A 0E9%%email: dsi@@cg.nrcan.gc.cadisp('[dataout]=rot3c(datain,headw1,tstart,tend,comp1,comp2)');w=pi/180;trclength=datain.fh{7}; %number of points per tracesmpint=datain.fh{8}; %smpint is the sampling intervaldataout=datain;%check to make sure data is separated into components%ntr is the number of traces in each recordfor COUNT=3:-1:1 %get number of traces in each component ntr(COUNT)=datain.th{COUNT}(12,1);end %forif (ntr(1)~=ntr(2)) | (ntr(1)~=ntr(3)) error('check data format - different number of traces in components');end%ifif length(datain.dat)~=3 error('data must have only 3 records - one for each of x, y and z');end %if%*************************************************************************%create a look-up table of sin and cos valuesfor COUNT=0:360 cosang(COUNT+1)=cos(COUNT*w); sinang(COUNT+1)=sin(COUNT*w);end %for COUNTntr=ntr(1);angmx(1:ntr)=0; %initialize angmx vector for storing rotation anglesfor COUNT1=1:ntr samp1=round((datain.th{1}(headw1,COUNT1)-datain.fh{9})/smpint)-round(tstart/smpint)+1; %calulates start of interval to be analyzed samp2=round((datain.th{1}(headw1,COUNT1)-datain.fh{9})/smpint)+round(tend/smpint)+1; %calulates end of interval to be analyzed fbsamp=round(datain.th{1}(headw1,COUNT1)/smpint); %this following loops over specified angles and returns the angle within %those specified that maximizes the radial component cmax=0; %initializing the max. energy of a component datawin=samp1:samp2; %the window over which the data is to be analyzed lendatawin=length(datawin); %length of the data window xy=[datain.dat{comp1}(datawin,COUNT1), datain.dat{comp2}(datawin,COUNT1)]; %the window of data to be analyzed rt=zeros(lendatawin,2); for COUNT2=0:90 %checks from 0 to 90 degrees %the following applies the rotation matrix and sums over each component rt(:,1)=xy(:,1)*cosang(COUNT2+1)+xy(:,2)*sinang(COUNT2+1); rt(:,2)=-xy(:,1)*sinang(COUNT2+1)+xy(:,2)*cosang(COUNT2+1); c1rms=sum(rt(:,1).*rt(:,1)); c2rms=sum(rt(:,2).*rt(:,2)); % the following checks to see if either component is being maximized if c1rms > cmax angmx(COUNT1)=COUNT2; cmax=c1rms; end %if if c2rms > cmax angmx(COUNT1)=COUNT2+90; cmax=c2rms; end %if end %for COUNT2 %now that one knows that one component is maximized in the range 0 to 180 degrees %one now checks if there has been a 180 degree phase shift ampmax=zeros(1,2); for COUNT2=1:2 ang=angmx(COUNT1)+(COUNT2-1)*180; %calculates the angle for the current quadrant being checked A=[cosang(ang+1),sinang(ang+1);-sinang(ang+1),cosang(ang+1)]; %rotation matrix % now to determine where the firstbreak is% fbloc=ceil(length(xy)/2);
fbloc=fbsamp-samp1; rt=A*xy(fbloc,:)'; %rotates the first break amplitudes ampmax(COUNT2)=rt(1); end %for COUNT2maxloc=find(ampmax==max(ampmax)); %finds the location of the maximum amplitude of component 1 angmx(COUNT1)=angmx(COUNT1)+(maxloc(1)-1)*180; %sets the angle that maximizes component 1end %for COUNT1for COUNT=1:ntr sinangmx=sinang(angmx(COUNT)+1); cosangmx=cosang(angmx(COUNT)+1); for COUNT2=1:trclength data1=datain.dat{comp1}(COUNT2,COUNT); data2=datain.dat{comp2}(COUNT2,COUNT); dataout.dat{comp1}(COUNT2,COUNT)=data1*cosangmx + data2*sinangmx; %radial dataout.dat{comp2}(COUNT2,COUNT)=-data1*sinangmx + data2*cosangmx; %transverse end %loop over samplesend %for COUNT%make changes to trace headerdataout.th{comp1}(4,:)=dataout.th{comp1}(4,:)+3;dataout.th{comp2}(4,:)=dataout.th{comp2}(4,:)+3;dataout.th{comp1}(5,:)=angmx(:);dataout.th{comp2}(5,:)=angmx(:);@2.1log@*** empty log message ***@text@d28 1a28 1%$Id: rot3c.m,v 2.0 1999/05/21 18:46:20 mah Exp $d30 3@2.0log@Release 2@text@d28 1a28 1%$Id: rot3c.m,v 1.7 1999/05/19 21:03:02 mah Exp mah $d30 3d120 2a121 1d164 2a165 1 fbloc=ceil(length(xy)/2);d170 2a171 2 maxloc=find(ampmax==max(ampmax)); %finds the location of the maximum amplitude of component 1 angmx(COUNT1)=angmx(COUNT1)+(maxloc-1)*180; %sets the angle that maximizes component 1@1.7log@version number@text@d28 1a28 1%$Id: rot3c.m,v 1.6 1999/03/18 19:47:09 mah Exp mah $d30 3@1.6log@made it more flexible by changing tint to tstart and tend@text@d21 1a21 1%DSIsoft ver 1.0d28 1a28 1%$Id: rot3c.m,v 1.5 1999/02/22 22:24:26 mah Exp mah $d30 3@1.5log@made it more robust@text@d1 1a1 1function [dataout]=rot3c(datain,headw1,tint,comp1,comp2)d7 1a7 1%function [dataout]=rot3c(datain,headw1,tint,comp1,comp2)d15 1a15 1% tint= time interval before and after first breaks in seconds to be analyzed for proper rotationd28 1a28 1%$Id: rot3c.m,v 1.4 1999/02/22 20:38:38 mah Exp mah $d30 3d74 1a74 1disp('[dataout]=rot3c(datain,headw1,tint,comp1,comp2)');d109 2a110 2 samp1=round((datain.th{1}(headw1,COUNT1)-datain.fh{9})/smpint)-round(tint/smpint)+1; %calulates start of interval to be analyzed samp2=samp1+2*round(tint/smpint); %calculates end of interval to be analyzedd177 2a178 2dataout.th{comp1}(4,:)=4;dataout.th{comp2}(4,:)=5;@1.4log@speed it up@text@d15 1a15 1% tint= time interval after first breaks in seconds to be analyzed for proper rotationd28 1a28 1%$Id: rot3c.m,v 1.3 1999/02/22 20:12:24 mah Exp mah $d30 3d106 2a107 2 samp1=round((datain.th{1}(headw1,COUNT1)-datain.fh{9})/smpint) +1; %calulates start of interval to be analyzed samp2=samp1+round(tint/smpint); %calculates end of interval to be analyzedd136 1a136 1 angmx(COUNT1)=COUNT2;d142 2a143 2 %now that one knows that one component is maximized in the range 0 to 90 degrees %one now checks all 4 quadrants to see which one maximizes component 1d145 1a145 1 ampmax=zeros(1,4);d147 2a148 2 for COUNT2=1:4 ang=angmx(COUNT1)+(COUNT2-1)*90; %calculates the angle for the current quadrant being checkedd150 3a152 1 rt=A*xy(1,:)'; %rotates the datad157 1a157 1 angmx(COUNT1)=angmx(COUNT1)+(maxloc-1)*90; %sets the angle that maximizes component 1@1.3log@changed sign convention in rotation to make in line with current practice@text@d28 1a28 1%$Id: rot3c.m,v 1.2 1999/02/22 19:48:27 mah Exp mah $d30 3d115 2a117 3 A=[cosang(COUNT2+1),sinang(COUNT2+1);-sinang(COUNT2+1),cosang(COUNT2+1)]; %rotation matrix c1rms=0.0; %sets the rms value for component 1 to zero c2rms=0.0; %sets the rms value for component 2 to zer0d119 5a123 5 for COUNT3=1:lendatawin %rotates and sums over the length of the data rt=A*xy(COUNT3,:)'; %rotation of data c1rms=c1rms+(rt(1,1).*rt(1,1)); c2rms=c2rms+(rt(2,1).*rt(2,1)); end %for COUNT3d146 1a146 1 A=[cosang(ang+1),-sinang(ang+1);sinang(ang+1),cosang(ang+1)]; %rotation matrix@1.2log@made program more flexible@text@d28 1a28 1%$Id: rot3c.m,v 1.1 1999/02/22 19:16:20 mah Exp mah $d30 3d113 1a113 1 A=[cosang(COUNT2+1),-sinang(COUNT2+1);sinang(COUNT2+1),cosang(COUNT2+1)]; %rotation matrixd161 2a162 2 dataout.dat{comp1}(COUNT2,COUNT)=data1*cosangmx - data2*sinangmx; %radial dataout.dat{comp2}(COUNT2,COUNT)=data1*sinangmx + data2*cosangmx; %transverse@1.1log@Initial revision@text@d1 1a1 1function [dataout]=rot3c(datain,headw1,tint)d7 1a7 1%function [dataout]=rot3c(datain,headw1,tint)d16 2d28 4a31 2%$Id: Exp $%$Log: $d34 1d62 1a62 1disp('[dataout]=rot3c(datain,headw1,tint)');d107 1a107 1 xy=[datain.dat{1}(datawin,COUNT1), datain.dat{2}(datawin,COUNT1)]; %the window of data to be analyzedd156 4a159 4 data1=datain.dat{1}(COUNT2,COUNT); data2=datain.dat{2}(COUNT2,COUNT); dataout.dat{1}(COUNT2,COUNT)=data1*cosangmx - data2*sinangmx; %radial dataout.dat{2}(COUNT2,COUNT)=data1*sinangmx + data2*cosangmx; %transversed164 4a167 5dataout.th{1}(4,:)=4;dataout.th{2}(4,:)=5;dataout.th{1}(5,:)=angmx(:);dataout.th{2}(5,:)=angmx(:);@
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -