📄 nichesga_5.m
字号:
%小生境遗传算法主程序
function f=NicheSGA_5;
OptimizationStyle='Max';VarietyNumber=1;Xmin=[0];Xmax=[1];PopulationSize=100;GenotypeLength=20;MaxGeneration=100;
Pc=0.9;Pm=0.01;N=PopulationSize/2;L=0.1;Penalty=10^(-30);
initpop=randint(PopulationSize,VarietyNumber*GenotypeLength+VarietyNumber+2);
oldpop=decode(OptimizationStyle,VarietyNumber,PopulationSize,Xmin,Xmax,GenotypeLength,initpop);
[B,index]=sort(oldpop(:,VarietyNumber*GenotypeLength+VarietyNumber+2));
oldpop=[oldpop(index(:),:)];
temp1=oldpop(PopulationSize-N+1:PopulationSize,:);
k=1;
while k<=MaxGeneration
newpop=selection(VarietyNumber,PopulationSize,GenotypeLength,oldpop);
randorder=randperm(PopulationSize);
for i=1:2:(PopulationSize-1)
parent1=newpop(randorder(i),:);
parent2=newpop(randorder(i+1),:);
[child1,child2]=crossover(VarietyNumber,GenotypeLength,parent1,parent2,Pc);
newpop(randorder(i),:)=child1;
newpop(randorder(i+1),:)=child2;
end
for i=1:PopulationSize
newpop(i,:)=mutation(VarietyNumber,GenotypeLength,Pm,newpop(i,:));
end
newpop=decode(OptimizationStyle,VarietyNumber,PopulationSize,Xmin,Xmax,GenotypeLength,newpop);
faveragevalue(k)=mean(newpop(:,VarietyNumber*GenotypeLength+VarietyNumber+1));
if (OptimizationStyle=='Max')
optimization(k,VarietyNumber+1)=max(newpop(:,VarietyNumber*GenotypeLength+VarietyNumber+1));
else
optimization(k,VarietyNumber+1)=min(newpop(:,VarietyNumber*GenotypeLength+VarietyNumber+1));
end
[tf,index]=ismember(optimization(k,VarietyNumber+1),newpop(:,VarietyNumber*GenotypeLength+VarietyNumber+1));
optimization(k,1:VarietyNumber)=newpop(index,VarietyNumber*GenotypeLength+1:VarietyNumber*GenotypeLength+VarietyNumber);
temp2=[temp1' newpop']';
temp2=niche(PopulationSize,VarietyNumber,GenotypeLength,N,L,Penalty,temp2);
[B,index]=sort(temp2(:,VarietyNumber*GenotypeLength+VarietyNumber+2));
temp2=[temp2(index(:),:)];
temp1=temp2(PopulationSize+1:PopulationSize+N,:);
oldpop=temp2(N+1:PopulationSize+N,:);
k=k+1;
end
if (OptimizationStyle=='Max')
optimizationf=max(optimization(:,VarietyNumber+1))
else
optimizationf=min(optimization(:,VarietyNumber+1))
end
[tf,index]=ismember(optimizationf,optimization(:,VarietyNumber+1));
optimizationX=optimization(index,1:VarietyNumber)
x=temp1(:,VarietyNumber*GenotypeLength+1);
y=temp1(:,VarietyNumber*GenotypeLength+VarietyNumber+1);
z=0:0.01:Xmax(1);
plot(x,y,'k.',z,functionf(z),'k-');
axis([0,1,-0.2,1]);
%选择(复制)算子程序
function newpop=selection(VarietyNumber,PopulationSize,GenotypeLength,oldpop);
totalfit=sum(oldpop(:,VarietyNumber*GenotypeLength+VarietyNumber+2));
if (totalfit>1e-15)
prob=oldpop(:,VarietyNumber*GenotypeLength+VarietyNumber+2)/totalfit;
prob=cumsum(prob);
randnum=sort(rand(PopulationSize,1));
oldorder=1;
neworder=1;
while neworder<=PopulationSize
if (randnum(neworder)<prob(oldorder))
newpop(neworder,:)=oldpop(oldorder,:);
neworder=neworder+1;
else
oldorder=oldorder+1;
end
end
else
newpop=oldpop;
end
%交叉算子程序
function [child1,child2]=crossover(VarietyNumber,GenotypeLength,parent1,parent2,Pc);
if(rand<Pc)
cpoint=round(rand*(VarietyNumber*GenotypeLength-2))+1;
child1=[parent1(1:cpoint) parent2(cpoint+1:VarietyNumber*GenotypeLength+VarietyNumber+2)];
child2=[parent2(1:cpoint) parent1(cpoint+1:VarietyNumber*GenotypeLength+VarietyNumber+2)];
else
child1=parent1;
child2=parent2;
end
%变异算子程序
function child=mutation(VarietyNumber,GenotypeLength,Pm,parent);
if(rand<Pm)
mpoint=round(rand*(VarietyNumber*GenotypeLength-1))+1;
child=parent;
child(mpoint)=1-parent(mpoint);
else
child=parent;
end
%小生境子程序
function newpop=niche(PopulationSize,VarietyNumber,GenotypeLength,N,L,Penalty,oldpop);
newpop=oldpop;
for i=1:PopulationSize+N-1
for j=i+1:PopulationSize+N
s=0;
for k=1:VarietyNumber
s=s+(oldpop(i,VarietyNumber*GenotypeLength+k)-oldpop(j,VarietyNumber*GenotypeLength+k))^2;
end
d(i,j)=sqrt(s);
if (d(i,j)<L)
if (oldpop(i,VarietyNumber*GenotypeLength+VarietyNumber+2)>=oldpop(j,VarietyNumber*GenotypeLength+VarietyNumber+2))
newpop(j,VarietyNumber*GenotypeLength+VarietyNumber+2)=Penalty;
else
newpop(i,VarietyNumber*GenotypeLength+VarietyNumber+2)=Penalty;
end
end
end
end
%解码及求适应度程序
function decodedpop=decode(OptimizationStyle,VarietyNumber,PopulationSize,Xmin,Xmax,GenotypeLength,pop);
decodedpop=pop;
for j=1:PopulationSize
for i=1:VarietyNumber
decodedpop(j,VarietyNumber*GenotypeLength+i)=(2.^(size(pop(j,(((i-1)*GenotypeLength)+1):(i*GenotypeLength)),2)-1:-1:0)*...
pop(j,(((i-1)*GenotypeLength)+1):(i*GenotypeLength))')'*(Xmax(i)-Xmin(i))/(2.^GenotypeLength-1)+Xmin(i);
end
end
for i=1:PopulationSize
decodedpop(i,VarietyNumber*GenotypeLength+VarietyNumber+1)=functionf(decodedpop(i,(VarietyNumber*GenotypeLength+1):(VarietyNumber*GenotypeLength+VarietyNumber)));
end
if (OptimizationStyle=='Max')
Cmin=min(decodedpop(:,VarietyNumber*GenotypeLength+VarietyNumber+1));
decodedpop(:,VarietyNumber*GenotypeLength+VarietyNumber+2)=decodedpop(:,VarietyNumber*GenotypeLength+VarietyNumber+1)-Cmin;
else
Cmax=max(decodedpop(:,VarietyNumber*GenotypeLength+VarietyNumber+1));
decodedpop(:,VarietyNumber*GenotypeLength+VarietyNumber+2)=Cmax-decodedpop(:,VarietyNumber*GenotypeLength+VarietyNumber+1);
end
%计算目标函数值程序
function f=functionf(x);
f=sin(5*pi*(x.^0.75-0.05)).^6;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -