📄 citation.html
字号:
Phys. Rev. Lett. <B>76</B>, 4705 (1996).<P><DT><A NAME="schmelcher"><STRONG>50</STRONG></A><DD>P. Schmelcher, and F. K. Diakonos, <EM>A general approach to the finding of unstable periodic orbits in chaotic dynamical systems</EM>, Physical Review E <B>57</B>, 2739 (1998).<P><DT><A NAME="kugiLL"><STRONG>51</STRONG></A><DD>D. Kugiumtzis, O. C. Lingjærde, and N. Christophersen, <EM>Regularized local linear prediction of chaotic time series</EM>, Physica D 112 (1998) 344.<P><DT><A NAME="jaeger"><STRONG>52</STRONG></A><DD>L. Jaeger and H. Kantz, <EM><a href="http://www.mpipks-dresden.mpg.de/publ/year95/9510004/9510004.ps.gz">Unbiased reconstruction of the dynamics underlying a noisy chaotic time series</a></EM>, CHAOS 6 (1996) 440.<P><DT><a name="casdagli91"><A NAME="Casdagli_royal"><STRONG>53</STRONG></A><DD> M. Casdagli, <EM>Chaos and deterministic versus stochastic nonlinear modeling</EM>, J. Roy. Stat. Soc. <B>54</B>, 303 (1991).<P><DT><A NAME="rbf"><STRONG>54</STRONG></A><DD> D. Broomhead and D. Lowe, <EM>Multivariable functional interpolation and adaptive networks</EM>, Complex Syst. <B>2</B>, 321 (1988).<P><DT><A NAME="lenny_rbf"><STRONG>55</STRONG></A><DD>L. A. Smith, <EM>Identification and prediction of low dimensional dynamics</EM>, Physica D <B>58</B>, 50 (1992).<P><DT><A NAME="Casdagli_pred"><STRONG>56</STRONG></A><DD>M. Casdagli, <EM>Nonlinear prediction of chaotic time series</EM>, Physica D <B>35</B>, 335 (1989); Reprinted in [<A HREF="citation.html#coping">9</A>].<P><DT><A NAME="ks"><STRONG>57</STRONG></A><DD> E. J. Kostelich and T. Schreiber, <EM>Noise reduction in chaotic time series data: A survey of common methods</EM>, Phys. Rev. E <B>48</B>, 1752 (1993).<P><DT><A NAME="Davies"><STRONG>58</STRONG></A><DD>M. E. Davies, <EM>Noise reduction schemes for chaotic time series</EM>, Physica D <B>79</B>, 174 (1994).<P><DT><A NAME="lazy"><STRONG>59</STRONG></A><DD>T. Schreiber, <EM>Extremely Simple Nonlinear Noise Reduction Method</EM>, Phys. Rev. E <B>47</B>, 2401 (1993).<P><DT><A NAME="b.dat"><STRONG>60</STRONG></A><DD>D. R. Rigney, A. L. Goldberger, W. Ocasio, Y. Ichimaru, G. B. Moody, and R. Mark, <EM>Multi-channel physiological data: Description and analysis (Data set B)</EM>, in [<A HREF="citation.html#SFI">17</A>].<P><DT><A NAME="on"><STRONG>61</STRONG></A><DD> P. Grassberger, R. Hegger, H. Kantz, C. Schaffrath, and T. Schreiber, <EM>On noise reduction methods for chaotic data</EM>, CHAOS <B>3</B>, 127 (1993); Reprinted in [<A HREF="citation.html#coping">9</A>].<P><DT><A NAME="buzug"><STRONG>62</STRONG></A><DD>H. Kantz, T. Schreiber, I. Hoffmann, T. Buzug, G. Pfister, L. G. Flepp, J. Simonet, R. Badii, and E. Brun, <EM>Nonlinear noise reduction: a case study on experimental data</EM>, Phys. Rev. E <B>48</B>, 1529 (1993).<P><DT><A NAME="raser"><STRONG>63</STRONG></A><DD>M. Finardi, L. Flepp, J. Parisi, R. Holzner, R. Badii, and E. Brun, <EM>Topological and metric analysis of heteroclinic crises in laser chaos</EM>, Phys. Rev. Lett. <B>68</B>, 2989 (1992).<P><DT><A NAME="danger"><STRONG>64</STRONG></A><DD>A. I. Mees and K. Judd, <EM>Dangers of geometric filtering</EM>, Physica D <B>68</B> 427 (1993).<P><DT><a name="filter"><A NAME="Filter"><STRONG>65</STRONG></A><DD>T. Schreiber and M. Richter, <EM><a href="http://xxx.lanl.gov/abs/chao-dyn/9803008">Nonlinear projective filtering in a data stream</a></EM>, to appear in Int. J. Bifurcat. Chaos (1999).<P><DT><A NAME="fetal2"><STRONG>66</STRONG></A><DD>M. Richter, T. Schreiber, and D. T. Kaplan, <EM><a href="http://www.mpipks-dresden.mpg.de/~schreibe/myrefs/IEEE.ps.gz">Fetal ECG extraction with nonlinear phase space projections</a></EM>, IEEE Trans. Bio-Med. Eng. <B>45</B>, 133 (1998).<P><DT><A NAME="EckRuelle"><STRONG>67</STRONG></A><DD>J.-P. Eckmann and D. Ruelle, <EM>Ergodic theory of chaos and strange attractors</EM>, Rev. Mod. Phys. <B>57</B>, 617 (1985).<P><DT><A NAME="spurious"><STRONG>68</STRONG></A><DD>R. Stoop and J. Parisi, <EM>Calculation of Lyapunov exponents avoiding spurious elements</EM>, Physica D <B>50</B>, 89 (1991).<P><DT><a name="holger"><A NAME="Holger"><STRONG>69</STRONG></A><DD> H. Kantz, <EM>A robust method to estimate the maximal Lyapunov exponent of a time series</EM>, Phys. Lett. A <B>185</B>, 77 (1994).<P><DT><A NAME="rose"><STRONG>70</STRONG></A><DD>M. T. Rosenstein, J. J. Collins, C. J. De Luca, <EM>A practical method for calculating largest Lyapunov exponents from small data sets</EM>, Physica D <B>65</B>, 117 (1993).<P><DT><a name="sasa"><A NAME="sano"><STRONG>71</STRONG></A><DD>M. Sano and Y. Sawada, <EM>Measurement of the Lyapunov spectrum from a chaotic time series</EM>, Phys. Rev. Lett. <B>55</B>, 1082 (1985).<P><DT><A NAME="KaplanYorke"><STRONG>72</STRONG></A><DD> J. Kaplan and J. Yorke <EM>Chaotic behavior of multidimensional difference equations</EM> In Peitgen, H. O. & Walther, H. O., editors, ``Functional Differential Equations and Approximation of Fixed Points'' Springer, New York (1987).<P><DT><a name="gp"><A NAME="GP"><STRONG>73</STRONG></A><DD>P. Grassberger and I. Procaccia, Physica D <B>9</B>, 189 (1983).<P><DT><A NAME="SauerYorke"><STRONG>74</STRONG></A><DD>T. Sauer and J. Yorke, <EM>How many delay coordinates do you need?</EM>, Int. J. Bifurcation and Chaos <B>3</B>, 737 (1993).<P><DT><A NAME="theiler_dim"><STRONG>75</STRONG></A><DD>J. Theiler, J. Opt. Soc. Amer. A <B>7</B>, 1055 (1990).<P><DT><A NAME="dim"><STRONG>76</STRONG></A><DD>H. Kantz and T. Schreiber, <em>Dimension estimates and physiological data</em>, CHAOS <B>5</B>, 143 (1995); Reprinted in [<A HREF="citation.html#dyndis">18</A>].<P><DT><A NAME="grass_finite"><STRONG>77</STRONG></A><DD>P. Grassberger, <EM>Finite sample corrections to entropy and dimension estimates</EM>, Phys. Lett. A <B>128</B>, 369 (1988).<P><DT><A NAME="takens_est"><STRONG>78</STRONG></A><DD>F. Takens, in: B. L. J. Braaksma, H. W. Broer, and F. Takens, eds., ``Dynamical Systems and Bifurcations'', Lecture Notes in Math. Vol. 1125, Springer, Heidelberg (1985).<P><DT><A NAME="takens_theiler"><STRONG>79</STRONG></A><DD> J. Theiler, <EM>Lacunarity in a best estimator of fractal dimension</EM>, Phys. Lett. <B>A 135</B>, 195 (1988).<P><DT><A NAME="ghez1"><STRONG>80</STRONG></A><DD> J. M. Ghez and S. Vaienti, <EM>Integrated wavelets on fractal sets I: The correlation dimension</EM>, Nonlinearity <B>5</B>, 777 (1992).<P><DT><A NAME="badiipoliti"><STRONG>81</STRONG></A><DD>R. Badii and A. Politi <EM>Statistical description of chaotic attractors</EM>, J. Stat. Phys. <B>40</B>, 725 (1985).<P><DT><A NAME="theiler1"><STRONG>82</STRONG></A><DD>J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, <EM>Testing for nonlinearity in time series: The method of surrogate data</EM>, Physica D <B>58</B>, 77 (1992); Reprinted in [<A HREF="citation.html#coping">9</A>].<P><DT><a name="surro"><A NAME="surrowe"><STRONG>83</STRONG></A><DD>T. Schreiber and A. Schmitz, <EM><a href="http://xxx.lanl.gov/abs/chao-dyn/9909041">Improved surrogate data for nonlinearity tests</a></EM>, Phys. Rev. Lett. <B>77</B>, 635 (1996).<P><DT><A NAME="theiler_sfi"><STRONG>84</STRONG></A><DD>J. Theiler, P. S. Linsay, and D. M. Rubin, <EM><a href="http://nis-www.lanl.gov/~jt/Papers/coherence-time.ps.gz">Detecting nonlinearity in data with long coherence times</a></EM>, in [<A HREF="citation.html#SFI">17</A>].<P><DT><a name="randomize"><A NAME="anneal"><STRONG>85</STRONG></A><DD>T. Schreiber, <EM><a href="http://xxx.lanl.gov/abs/chao-dyn/9909042">Constrained randomization of time series data</a></EM>, Phys. Rev. Lett. 80 (1998) 2105.<P><DT><A NAME="BI"><STRONG>86</STRONG></A><DD>T. Subba Rao and M. M. Gabr, ``An Introduction to Bispectral Analysis and Bilinear Time Series Models'', Lecture Notes in Statistics Vol. 24, Springer, New York (1984).<P><DT><A NAME="diks2"><STRONG>87</STRONG></A><DD> C. Diks, J. C. van Houwelingen, F. Takens, and J. DeGoede, <EM>Reversibility as a criterion for discriminating time series</EM>, Phys. Lett. A <B>201</B>, 221 (1995).<P><DT><A NAME="power"><STRONG>88</STRONG></A><DD>T. Schreiber and A. Schmitz, <EM><a href="http://xxx.lanl.gov/abs/chao-dyn/9909043">Discrimination power of measures for nonlinearity in a time series</a></EM>, Phys. Rev. E <B>55</B>, 5443 (1997).<P><DT><A NAME="Kadtke"><STRONG>89</STRONG></A><DD>J. Kadtke, <EM>Classification of highly noisy signals using global dynamical models</EM>, Phys. Lett. A <B>203</B>, 196 (1995).<P><DT><A NAME="B1"><STRONG>90</STRONG></A><DD>R. Manuca and R. Savit, <EM>Stationarity and nonstationarity in time series analysis</EM>, Physica D <B>99</B>, 134 (1996).<P><DT><A NAME="casEEG"><STRONG>91</STRONG></A><DD>M. C. Casdagli, L. D. Iasemidis, R. S. Savit, R. L. Gilmore, S. Roper, and J. C. Sackellares, <EM>Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy</EM>, Electroencephalogr. Clin. Neurophysiol. <B>102</B>, 98 (1997).<P><DT><A NAME="statio"><STRONG>92</STRONG></A><DD>T. Schreiber, <EM><a href="http://xxx.lanl.gov/abs/chao-dyn/9909044">Detecting and analysing nonstationarity in a time series using nonlinear cross predictions</a></EM>, Phys. Rev. Lett. <B>78</B>, 843 (1997).<P><DT><A NAME="cawley"><STRONG>93</STRONG></A><DD>R. Cawley and G. H. Hsu, <em>Local-geometric-projection method for noise reduction in chaotic maps and flows</em>, Phys. Rev. A. <b>46</b>, 3057 (1992).<P><DT><A NAME="kantz"><STRONG>94</STRONG></A><DD>H. Kantz, <em>Quantifying the closeness of fractal measures</em>, Phys. Rev. E <b>49</b>, 5091 (1994).<P><DT><A NAME="sauer"><STRONG>95</STRONG></A><DD>T. Sauer, <em>A noise reduction method for signals from nonlinear systems</em>, Physica D <b>58</b>, 193 (1992).<P><DT><A NAME="aurell97"><STRONG>96</STRONG></A><DD>E. Aurell, G. Boffetta, A. Crisanti, G. Paladin, and A. Vulpiani, <em>Predictability in the large: an extension of the concept of Lyapunov exponent</em>, J. Phys. A <b>30</b>, 1 (1997).<DT><A NAME="cluster"><STRONG>97</STRONG></A><DD>T. Schreiber and A. Schmitz, <em> Classification of time series data with nonlinear similarity measures</em>, Phys. Rev. Lett. <b>79</b>, 1475 (1997).</DL><HR><A NAME="tex2html507" HREF="node44.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="icons/next_motif.gif"></A> <A NAME="tex2html505" HREF="TiseanHTML.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="icons/up_motif.gif"></A> <A NAME="tex2html499" HREF="node42.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="icons/previous_motif.gif"></A> <BR><B> Next:</B> <A NAME="tex2html508" HREF="node44.html"> About this document </A><B>Up:</B> <A NAME="tex2html506" HREF="TiseanHTML.html">Practical implementation of nonlinear </A><B> Previous:</B> <A NAME="tex2html500" HREF="node42.html">Acknowledgments</A><P><ADDRESS><I>Thomas Schreiber <BR>Wed Jan 6 15:38:27 CET 1999</I></ADDRESS></BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -