⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 node20.html

📁 时间序列工具
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN"><!--Converted with LaTeX2HTML 96.1-h (September 30, 1996) by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds --><HTML><HEAD><TITLE>Combinatorial minimisation and accuracy</TITLE><META NAME="description" CONTENT="Combinatorial minimisation and accuracy"><META NAME="keywords" CONTENT="Surrogates"><META NAME="resource-type" CONTENT="document"><META NAME="distribution" CONTENT="global"><LINK REL=STYLESHEET HREF="Surrogates.css"></HEAD><BODY bgcolor=#ffffff LANG="EN" > <A NAME="tex2html275" HREF="node21.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="next_motif.gif"></A> <A NAME="tex2html273" HREF="node16.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="up_motif.gif"></A> <A NAME="tex2html267" HREF="node19.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="previous_motif.gif"></A>   <BR><B> Next:</B> <A NAME="tex2html276" HREF="node21.html">The curse of accuracy</A><B>Up:</B> <A NAME="tex2html274" HREF="node16.html">General constrained randomisation</A><B> Previous:</B> <A NAME="tex2html268" HREF="node19.html">Example: avoiding periodicity artefacts</A><BR> <P><H2><A NAME="SECTION00054000000000000000">Combinatorial minimisation and accuracy</A></H2><P>In principle, simulated annealing is able to reach arbitrary accuracy at theexpense of computer time. We should, however, remark on a few points.  Unlikeother minimisation problems, we are not really interested in the solutions thatput <I>E</I>=0 exactly. Most likely, these are the data set itself and a few simpletransformations of it that preserve the cost function (e.g. a time reversedcopy). On the other hand, combinatorics makes it very unlikely that we everreach one of these few of the <I>N</I>! permutations, unless <I>N</I> is really small orthe constraints grossly over-specify the problem.  This can be the case, forexample, if we include <EM>all</EM> possible lags of the autocorrelation function,which gives as many (nonlinear) equations as unknowns, <I>I</I>=<I>N</I>. These may closefor small <I>N</I> in the space of permutations.  In such extreme situations, it ispossible to include extra cost terms penalising closeness to one of the trivialtransformations of the data.  Let us note that if the surrogates are ``toosimilar'' to the data, this does not in itself affect the validity of thetest. Only the discrimination power may be severely reduced.<P>Now, if we don't want to reach <I>E</I>=0, how can we be sure that there are enoughindependent realisations with <IMG WIDTH=42 HEIGHT=12 ALIGN=BOTTOM ALT="tex2html_wrap_inline2244" SRC="img115.gif">? The theoretical answer depends onthe form of the constraints in a complicated way and cannot be given ingeneral. We can, however, offer a heuristic argument that the number ofconfigurations with <I>E</I> smaller than some <IMG WIDTH=24 HEIGHT=12 ALIGN=BOTTOM ALT="tex2html_wrap_inline2248" SRC="img116.gif"> grows fast for large <I>N</I>.Suppose that for large <I>N</I> the probability distribution of <I>E</I> converges to anasymptotic form <I>p</I>(<I>E</I>). Assume further that <IMG WIDTH=288 HEIGHT=33 ALIGN=MIDDLE ALT="tex2html_wrap_inline2258" SRC="img117.gif"> is nonzero but maybevery small. This is evidently true for autocorrelations, for example. Whilethus the probability to find <IMG WIDTH=59 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline2260" SRC="img118.gif"> in a random draw from thedistribution of the data may be extremely small, say <IMG WIDTH=107 HEIGHT=28 ALIGN=MIDDLE ALT="tex2html_wrap_inline2262" SRC="img119.gif"> at 10 sigmas from the mean energy, the total number ofpermutations, figuring as the number of draws, grows as <IMG WIDTH=138 HEIGHT=30 ALIGN=MIDDLE ALT="tex2html_wrap_inline2264" SRC="img120.gif">, that is, much faster than exponentially. Thus, we expectthe number of permutations with <IMG WIDTH=59 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline2260" SRC="img118.gif"> to be <IMG WIDTH=79 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline2268" SRC="img121.gif">.  For example, <IMG WIDTH=156 HEIGHT=28 ALIGN=MIDDLE ALT="tex2html_wrap_inline2270" SRC="img122.gif">.<P>In any case, we can always monitor the convergence of the cost function toavoid spurious results due to residual inaccuracy in the surrogates.  As wewill discuss below, it can also be a good idea to test the surrogates with alinear test statistic before performing the actual nonlinearity test.<P><HR><A NAME="tex2html275" HREF="node21.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="next_motif.gif"></A> <A NAME="tex2html273" HREF="node16.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="up_motif.gif"></A> <A NAME="tex2html267" HREF="node19.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="previous_motif.gif"></A>   <BR><B> Next:</B> <A NAME="tex2html276" HREF="node21.html">The curse of accuracy</A><B>Up:</B> <A NAME="tex2html274" HREF="node16.html">General constrained randomisation</A><B> Previous:</B> <A NAME="tex2html268" HREF="node19.html">Example: avoiding periodicity artefacts</A><P><ADDRESS><I>Thomas Schreiber <BR>Mon Aug 30 17:31:48 CEST 1999</I></ADDRESS></BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -