📄 lfo-ar.c
字号:
/* * This file is part of TISEAN * * Copyright (c) 1998-2007 Rainer Hegger, Holger Kantz, Thomas Schreiber * * TISEAN is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * TISEAN is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with TISEAN; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA *//*Author: Rainer Hegger. Last modified: Jun 21, 2005 *//*changes: Jun 17, 2005: Comments in the output file updated Jun 21, 2005: free imat in make_fit*/#include <stdio.h>#include <stdlib.h>#include <string.h>#include <limits.h>#include "routines/tsa.h"#include <math.h>#define WID_STR "Estimates the average forecast error for a local\n\t\linear fit as a function of the neighborhood size."/*number of boxes for the neighbor search algorithm*/#define NMAX 256unsigned int nmax=(NMAX-1);long **box,*list;unsigned long *found;double *error;double **series;char eps0set=0,eps1set=0,causalset=0,dimset=0;char *outfile=NULL,stdo=1;char *column=NULL;unsigned int dim=1,embed=2,delay=1;unsigned int verbosity=0xff;int STEP=1;double EPS0=1.e-3,EPS1=1.0,EPSF=1.2;unsigned long LENGTH=ULONG_MAX,exclude=0,CLENGTH=ULONG_MAX,causal;char *infile=NULL;double **mat,*vec,*localav,*foreav,*hvec;void show_options(char *progname){ what_i_do(progname,WID_STR); fprintf(stderr," Usage: %s [options]\n",progname); fprintf(stderr," Options:\n"); fprintf(stderr,"Everything not being a valid option will be interpreted" " as a possible" " datafile.\nIf no datafile is given stdin is read. Just - also" " means stdin\n"); fprintf(stderr,"\t-l # of data to use [default: whole file]\n"); fprintf(stderr,"\t-x # of lines to be ignored [default: 0]\n"); fprintf(stderr,"\t-c columns to read [default: 1,...,# of components]\n"); fprintf(stderr,"\t-m # of components,embedding dimension [default: 1,2]\n"); fprintf(stderr,"\t-d delay [default: 1]\n"); fprintf(stderr,"\t-i iterations [default: length]\n"); fprintf(stderr,"\t-r neighborhood size to start with [default:" " (interval of data)/1000)]\n"); fprintf(stderr,"\t-R neighborhood size to end with [default:" " interval of data]\n"); fprintf(stderr,"\t-f factor to increase size [default: 1.2]\n"); fprintf(stderr,"\t-s steps to forecast [default: 1]\n"); fprintf(stderr,"\t-C width of causality window [default: steps]\n"); fprintf(stderr,"\t-o output file name [default: 'datafile.ll']\n"); fprintf(stderr,"\t-V verbosity level [default: 1]\n\t\t" "0='only panic messages'\n\t\t" "1='+ input/output messages'\n"); fprintf(stderr,"\t-h show these options\n"); exit(0);}void scan_options(int n,char **in){ char *out; if ((out=check_option(in,n,'l','u')) != NULL) sscanf(out,"%lu",&LENGTH); if ((out=check_option(in,n,'x','u')) != NULL) sscanf(out,"%lu",&exclude); if ((out=check_option(in,n,'c','s')) != NULL) { column=out; dimset=1; } if ((out=check_option(in,n,'m','2')) != NULL) sscanf(out,"%u,%u",&dim,&embed); if ((out=check_option(in,n,'d','u')) != NULL) sscanf(out,"%u",&delay); if ((out=check_option(in,n,'i','u')) != NULL) sscanf(out,"%lu",&CLENGTH); if ((out=check_option(in,n,'r','f')) != NULL) { eps0set=1; sscanf(out,"%lf",&EPS0); } if ((out=check_option(in,n,'R','f')) != NULL) { eps1set=1; sscanf(out,"%lf",&EPS1); } if ((out=check_option(in,n,'f','f')) != NULL) sscanf(out,"%lf",&EPSF); if ((out=check_option(in,n,'s','u')) != NULL) sscanf(out,"%u",&STEP); if ((out=check_option(in,n,'C','u')) != NULL) { sscanf(out,"%lu",&causal); causalset=1; } if ((out=check_option(in,n,'V','u')) != NULL) sscanf(out,"%u",&verbosity); if ((out=check_option(in,n,'o','o')) != NULL) { stdo=0; if (strlen(out) > 0) outfile=out; }}void multiply_matrix(double **mat,double *vec){ long i,j; for (i=0;i<dim*embed;i++) { hvec[i]=0.0; for (j=0;j<dim*embed;j++) hvec[i] += mat[i][j]*vec[j]; } for (i=0;i<dim*embed;i++) vec[i]=hvec[i];}void make_fit(long act,unsigned long number){ double *si,*sj,lavi,lavj,fav,**imat,cast; long i,i1,hi,hi1,j,j1,hj,hj1,n,which; for (i=0;i<embed*dim;i++) localav[i]=0; for (i=0;i<dim;i++) foreav[i]=0.0; for (n=0;n<number;n++) { which=found[n]; for (j=0;j<dim;j++) { sj=series[j]; foreav[j] += sj[which+STEP]; for (j1=0;j1<embed;j1++) { hj=j*embed+j1; localav[hj] += sj[which-j1*delay]; } } } for (i=0;i<dim*embed;i++) localav[i] /= number; for (i=0;i<dim;i++) foreav[i] /= number; for (i=0;i<dim;i++) { si=series[i]; for (i1=0;i1<embed;i1++) { hi=i*embed+i1; lavi=localav[hi]; hi1=i1*delay; for (j=0;j<dim;j++) { sj=series[j]; for (j1=0;j1<embed;j1++) { hj=j*embed+j1; lavj=localav[hj]; hj1=j1*delay; mat[hi][hj]=0.0; if (hj >= hi) { for (n=0;n<number;n++) { which=found[n]; mat[hi][hj] += (si[which-hi1]-lavi)*(sj[which-hj1]-lavj); } } } } } } for (i=0;i<dim*embed;i++) for (j=i;j<dim*embed;j++) { mat[i][j] /= number; mat[j][i]=mat[i][j]; } imat=invert_matrix(mat,dim*embed); for (i=0;i<dim;i++) { si=series[i]; fav=foreav[i]; for (j=0;j<dim;j++) { sj=series[j]; for (j1=0;j1<embed;j1++) { hj=j*embed+j1; lavj=localav[hj]; hj1=j1*delay; vec[hj]=0.0; for (n=0;n<number;n++) { which=found[n]; vec[hj] += (si[which+STEP]-fav)*(sj[which-hj1]-lavj); } vec[hj] /= number; } } multiply_matrix(imat,vec); cast=foreav[i]; for (j=0;j<dim;j++) { sj=series[j]; for (j1=0;j1<embed;j1++) { hj=j*embed+j1; cast += vec[hj]*(sj[act-j1*delay]-localav[hj]); } } error[i] += sqr(cast-series[i][act+STEP]); } for (i=0;i<embed*dim;i++) free(imat[i]); free(imat);}int main(int argc,char **argv){ char stdi=0; unsigned long actfound; unsigned long *hfound; long pfound,i,j; unsigned long clength; double interval,min,maxinterval; double epsilon; double **hser; double avfound,*hrms,*hav,sumerror=0.0; FILE *file=NULL; if (scan_help(argc,argv)) show_options(argv[0]); scan_options(argc,argv);#ifndef OMIT_WHAT_I_DO if (verbosity&VER_INPUT) what_i_do(argv[0],WID_STR);#endif if (!causalset) causal=STEP; infile=search_datafile(argc,argv,NULL,verbosity); if (infile == NULL) stdi=1; if (outfile == NULL) { if (!stdi) { check_alloc(outfile=(char*)calloc(strlen(infile)+4,(size_t)1)); sprintf(outfile,"%s.ll",infile); } else { check_alloc(outfile=(char*)calloc((size_t)9,(size_t)1)); sprintf(outfile,"stdin.ll"); } } if (!stdo) test_outfile(outfile); if (column == NULL) series=(double**)get_multi_series(infile,&LENGTH,exclude,&dim,"",dimset, verbosity); else series=(double**)get_multi_series(infile,&LENGTH,exclude,&dim,column, dimset,verbosity); maxinterval=0.0; for (i=0;i<dim;i++) { rescale_data(series[i],LENGTH,&min,&interval); if (interval > maxinterval) maxinterval=interval; } interval=maxinterval; check_alloc(list=(long*)malloc(sizeof(long)*LENGTH)); check_alloc(found=(unsigned long*)malloc(sizeof(long)*LENGTH)); check_alloc(hfound=(unsigned long*)malloc(sizeof(long)*LENGTH)); check_alloc(box=(long**)malloc(sizeof(long*)*NMAX)); for (i=0;i<NMAX;i++) check_alloc(box[i]=(long*)malloc(sizeof(long)*NMAX)); check_alloc(vec=(double*)malloc(sizeof(double)*(embed*dim))); check_alloc(hvec=(double*)malloc(sizeof(double)*(embed*dim))); check_alloc(mat=(double**)malloc(sizeof(double*)*(embed*dim))); for (i=0;i<dim*embed;i++) check_alloc(mat[i]=(double*)malloc(sizeof(double)*(embed*dim))); check_alloc(error=(double*)malloc(sizeof(double)*dim)); check_alloc(hrms=(double*)malloc(sizeof(double)*dim)); check_alloc(hav=(double*)malloc(sizeof(double)*dim)); check_alloc(hser=(double**)malloc(sizeof(double*)*dim)); check_alloc(foreav=(double*)malloc(sizeof(double)*dim)); check_alloc(localav=(double*)malloc(sizeof(double)*(embed*dim))); if (eps0set) EPS0 /= interval; if (eps1set) EPS1 /= interval; clength=(CLENGTH <= LENGTH) ? CLENGTH-STEP : LENGTH-STEP; if (!stdo) { file=fopen(outfile,"w"); if (verbosity&VER_INPUT) fprintf(stderr,"Opened %s for writing\n",outfile); fprintf(file,"#1.) neighborhood size\n"); fprintf(file,"#2.) average relative forecast error\n"); fprintf(file,"#next n.) relative forecast error of the n components\n"); fprintf(file,"#second last.) fraction of points with enough neighbors\n"); fprintf(file,"#last .) average number of neighbors used for the fit\n"); } else { if (verbosity&VER_INPUT) fprintf(stderr,"Writing to stdout\n"); } for (epsilon=EPS0;epsilon<EPS1*EPSF;epsilon*=EPSF) { pfound=0; for (i=0;i<dim;i++) error[i]=hrms[i]=hav[i]=0.0; avfound=0.0; make_multi_box(series,box,list,LENGTH-STEP,NMAX,dim, embed,delay,epsilon); for (i=(embed-1)*delay;i<clength;i++) { for (j=0;j<dim;j++) hser[j]=series[j]+i; actfound=find_multi_neighbors(series,box,list,hser,LENGTH, NMAX,dim,embed,delay,epsilon,hfound); actfound=exclude_interval(actfound,i-causal+1,i+causal+(embed-1)*delay-1, hfound,found); if (actfound > 2*(dim*embed+1)) { make_fit(i,actfound); pfound++; avfound += (double)(actfound-1); for (j=0;j<dim;j++) { hrms[j] += series[j][i+STEP]*series[j][i+STEP]; hav[j] += series[j][i+STEP]; } } } if (pfound > 1) { sumerror=0.0; for (j=0;j<dim;j++) { hav[j] /= pfound; hrms[j]=sqrt(fabs(hrms[j]/(pfound-1)-hav[j]*hav[j]*pfound/(pfound-1))); error[j]=sqrt(error[j]/pfound)/hrms[j]; sumerror += error[j]; } } if (stdo) { if (pfound > 1) { fprintf(stdout,"%e %e ",epsilon*interval,sumerror/(double)dim); for (j=0;j<dim;j++) fprintf(stdout,"%e ",error[j]); fprintf(stdout,"%e %e\n",(double)pfound/(clength-(embed-1)*delay), avfound/pfound); fflush(stdout); } } else { if (pfound > 1) { fprintf(file,"%e %e ",epsilon*interval,sumerror/(double)dim); for (j=0;j<dim;j++) fprintf(file,"%e ",error[j]); fprintf(file,"%e %e\n",(double)pfound/(clength-(embed-1)*delay), avfound/pfound); fflush(file); } } } if (!stdo) fclose(file); return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -