⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lfo-test.c

📁 时间序列工具
💻 C
字号:
/* *   This file is part of TISEAN * *   Copyright (c) 1998-2007 Rainer Hegger, Holger Kantz, Thomas Schreiber * *   TISEAN is free software; you can redistribute it and/or modify *   it under the terms of the GNU General Public License as published by *   the Free Software Foundation; either version 2 of the License, or *   (at your option) any later version. * *   TISEAN is distributed in the hope that it will be useful, *   but WITHOUT ANY WARRANTY; without even the implied warranty of *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *   GNU General Public License for more details. * *   You should have received a copy of the GNU General Public License *   along with TISEAN; if not, write to the Free Software *   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA *//*Author: Rainer Hegger *//*Changes:  Sep 8, 2006: Add -o functionality  Sep 7, 2006: Completely rewritten to handle multivariate data */#include <stdio.h>#include <stdlib.h>#include <string.h>#include <limits.h>#include "routines/tsa.h"#include <math.h>#define WID_STR "Estimates the average forecast error of a local\n\t\linear fit"/*number of boxes for the neighbor search algorithm*/#define NMAX 512unsigned int nmax=(NMAX-1),comp1,hdim,**indexes;long **box,*list;unsigned long *found,*hfound;double **series;double epsilon;double **mat,**imat,*vec,*localav,*foreav;char epsset=0,causalset=0;unsigned int verbosity=VER_INPUT|VER_FIRST_LINE;unsigned int COMP=1,EMBED=2,DIM,DELAY=1,MINN=30,STEP=1;double EPS0=1.e-3,EPSF=1.2;unsigned long LENGTH=ULONG_MAX,exclude=0,CLENGTH=ULONG_MAX,causal;char *infile=NULL,*COLUMN=NULL,*outfile=NULL;char dimset=0,stout=1;void show_options(char *progname){  what_i_do(progname,WID_STR);  fprintf(stderr," Usage: %s [options]\n",progname);  fprintf(stderr," Options:\n");  fprintf(stderr,"Everything not being a valid option will be interpreted"          " as a possible"          " datafile.\nIf no datafile is given stdin is read. Just - also"          " means stdin\n");  fprintf(stderr,"\t-l # of data to use [default: whole file]\n");  fprintf(stderr,"\t-x # of lines to be ignored [default: 0]\n");  fprintf(stderr,"\t-c columns to read [default: 1]\n");  fprintf(stderr,"\t-m # of components, embedding dimension "	  "[default: %u,%u]\n",COMP,EMBED);  fprintf(stderr,"\t-d delay [default: 1]\n");  fprintf(stderr,"\t-n iterations [default: length]\n");  fprintf(stderr,"\t-k minimal number of neighbors for the fit "	  "[default: 30]\n");  fprintf(stderr,"\t-r neighborhoud size to start with "	  "[default: (data interval)/1000]\n");  fprintf(stderr,"\t-f factor to increase size [default: 1.2]\n");  fprintf(stderr,"\t-s steps to forecast [default: 1]\n");  fprintf(stderr,"\t-C width of causality window [default: steps]\n");  fprintf(stderr,"\t-o output file [default 'datafile'.fce"	  " no -o means write to stdout]\n");  fprintf(stderr,"\t-V verbosity level [default: 1]\n\t\t"          "0='only panic messages'\n\t\t"          "1='+ input/output messages'\n\t\t"	  "2='+ print indiviual forecast errors'\n");  fprintf(stderr,"\t-h show these options\n");  exit(0);}void scan_options(int n,char **in){  char *out;  if ((out=check_option(in,n,'l','u')) != NULL)    sscanf(out,"%lu",&LENGTH);  if ((out=check_option(in,n,'x','u')) != NULL)    sscanf(out,"%lu",&exclude);  if ((out=check_option(in,n,'c','s')) != NULL) {    COLUMN=out;    dimset=1;  }  if ((out=check_option(in,n,'m','2')) != NULL)    sscanf(out,"%u,%u",&COMP,&EMBED);  if ((out=check_option(in,n,'d','u')) != NULL)    sscanf(out,"%u",&DELAY);  if ((out=check_option(in,n,'n','u')) != NULL)    sscanf(out,"%lu",&CLENGTH);  if ((out=check_option(in,n,'V','u')) != NULL)    sscanf(out,"%u",&verbosity);  if ((out=check_option(in,n,'k','u')) != NULL)    sscanf(out,"%u",&MINN);  if ((out=check_option(in,n,'r','f')) != NULL) {    epsset=1;    sscanf(out,"%lf",&EPS0);  }  if ((out=check_option(in,n,'f','f')) != NULL)    sscanf(out,"%lf",&EPSF);  if ((out=check_option(in,n,'s','u')) != NULL)    sscanf(out,"%u",&STEP);  if ((out=check_option(in,n,'C','u')) != NULL) {    sscanf(out,"%lu",&causal);    causalset=1;  }  if ((out=check_option(in,n,'o','o')) != NULL) {    stout=0;    if (strlen(out) > 0)      outfile=out;  }}void put_in_boxes(void){  int i,j,n;  double epsinv;  epsinv=1.0/epsilon;  for (i=0;i<NMAX;i++)    for (j=0;j<NMAX;j++)      box[i][j]= -1;  for (n=hdim;n<LENGTH-STEP;n++) {    i=(int)(series[0][n]*epsinv)&nmax;    j=(int)(series[comp1][n-hdim]*epsinv)&nmax;    list[n]=box[i][j];    box[i][j]=n;  }}unsigned int hfind_neighbors(unsigned long act){  char toolarge;  int i,j,i1,i2,j1,k,element;  unsigned long nfound=0;  unsigned int hcomp,hdel;  double max,dx,epsinv;  epsinv=1.0/epsilon;  i=(int)(series[0][act]*epsinv)&nmax;  j=(int)(series[comp1][act-hdim]*epsinv)&nmax;    for (i1=i-1;i1<=i+1;i1++) {    i2=i1&nmax;    for (j1=j-1;j1<=j+1;j1++) {      element=box[i2][j1&nmax];      while (element != -1) {	max=0.0;	toolarge=0;	for (k=0;k<DIM;k += 1) {	  hcomp=indexes[0][k];	  hdel=indexes[1][k];	  dx=fabs(series[hcomp][element-hdel]-series[hcomp][act-hdel]);	  max=(dx>max) ? dx : max;	  if (max > epsilon) {	    toolarge=1;	    break;	  }	  if (toolarge)	    break;	}	if (max <= epsilon)	  hfound[nfound++]=element;	element=list[element];      }    }  }  return nfound;}void multiply_matrix(double **mat,double *vec){  double *hvec;  long i,j;  check_alloc(hvec=(double*)malloc(sizeof(double)*DIM));  for (i=0;i<DIM;i++) {    hvec[i]=0.0;    for (j=0;j<DIM;j++)      hvec[i] += mat[i][j]*vec[j];  }  for (i=0;i<DIM;i++)    vec[i]=hvec[i];  free(hvec);}void make_fit(int number,unsigned long act,double *newcast){  double *sj,*si,lavi,lavj,fav;  unsigned int hci,hdi,hcj,hdj;  long i,j,n,which;  for (i=0;i<DIM;i++)    localav[i]=0.0;  for (i=0;i<COMP;i++)    foreav[i]=0.0;  for (n=0;n<number;n++) {    which=found[n];    for (j=0;j<COMP;j++)      foreav[j] += series[j][which+STEP];    for (j=0;j<DIM;j++) {      hcj=indexes[0][j];      hdj=indexes[1][j];      localav[j] += series[hcj][which-hdj];    }  }  for (i=0;i<DIM;i++)    localav[i] /= number;  for (i=0;i<COMP;i++)    foreav[i] /= number;  for (i=0;i<DIM;i++) {    hci=indexes[0][i];    hdi=indexes[1][i];    lavi=localav[i];    si=series[hci];    for (j=i;j<DIM;j++) {      hcj=indexes[0][j];      hdj=indexes[1][j];      lavj=localav[j];      sj=series[hcj];      mat[i][j]=0.0;      for (n=0;n<number;n++) {	which=found[n];	mat[i][j] += (si[which-hdi]-lavi)*(sj[which-hdj]-lavj);      }      mat[i][j] /= number;      mat[j][i] = mat[i][j];    }  }  imat=invert_matrix(mat,DIM);  for (i=0;i<COMP;i++) {    si=series[i];    fav=foreav[i];    for (j=0;j<DIM;j++) {      hcj=indexes[0][j];      hdj=indexes[1][j];      lavj=localav[j];      vec[j]=0.0;      sj=series[hcj];      for (n=0;n<number;n++) {	which=found[n];	vec[j] += (si[which+STEP]-fav)*(sj[which-hdj]);      }      vec[j] /= number;    }    multiply_matrix(imat,vec);    newcast[i]=foreav[i];    for (j=0;j<DIM;j++) {      hcj=indexes[0][j];      hdj=indexes[1][j];      newcast[i] += vec[j]*(series[hcj][act-hdj]-localav[j]);    }  }    for (i=0;i<DIM;i++)    free(imat[i]);  free(imat);}int main(int argc,char **argv){  char stin=0,alldone,*done;  long i,j;  unsigned long actfound;  unsigned long clength;  double *rms,*av,*min,*interval,maxinterval,norm;  double *error,**individual=NULL;  double *newcast;  FILE *fout;  if (scan_help(argc,argv))    show_options(argv[0]);    scan_options(argc,argv);  if (!causalset)    causal=STEP;#ifndef OMIT_WHAT_I_DO  if (verbosity&VER_INPUT)    what_i_do(argv[0],WID_STR);#endif  infile=search_datafile(argc,argv,NULL,verbosity);  if (infile == NULL)    stin=1;    if (outfile == NULL) {    if (!stin) {      check_alloc(outfile=(char*)calloc(strlen(infile)+5,(size_t)1));      strcpy(outfile,infile);      strcat(outfile,".fce");    }    else {      check_alloc(outfile=(char*)calloc((size_t)10,(size_t)1));      strcpy(outfile,"stdin.fce");    }  }  if (!stout)    test_outfile(outfile);    if (COLUMN == NULL)    series=(double**)get_multi_series(infile,&LENGTH,exclude,&COMP,"",dimset,                                      verbosity);  else    series=(double**)get_multi_series(infile,&LENGTH,exclude,&COMP,COLUMN,                                      dimset,verbosity);  if ((LENGTH-(EMBED-1)*DELAY) < MINN) {    fprintf(stderr,"Data set is too short to find enough neighbors "	    "for the fit! Exiting!\n");    exit(ONESTEP_TOO_FEW_POINTS);  }  DIM=EMBED*COMP;  check_alloc(min=(double*)malloc(sizeof(double)*COMP));  check_alloc(interval=(double*)malloc(sizeof(double)*COMP));  check_alloc(av=(double*)malloc(sizeof(double)*COMP));  check_alloc(rms=(double*)malloc(sizeof(double)*COMP));  maxinterval=0.0;  for (i=0;i<COMP;i++) {    rescale_data(series[i],LENGTH,&min[i],&interval[i]);    maxinterval=(maxinterval<interval[i])?interval[i]:maxinterval;    variance(series[i],LENGTH,&av[i],&rms[i]);  }    if (verbosity&VER_USR1) {    check_alloc(individual=(double**)malloc(sizeof(double*)*COMP));    for (j=0;j<COMP;j++) {      check_alloc(individual[j]=(double*)malloc(sizeof(double)*LENGTH));      for (i=0;i<LENGTH;i++)	individual[j][i]=0.0;    }  }  check_alloc(list=(long*)malloc(sizeof(long)*LENGTH));  check_alloc(found=(unsigned long*)malloc(sizeof(long)*LENGTH));  check_alloc(hfound=(unsigned long*)malloc(sizeof(long)*LENGTH));  check_alloc(done=(char*)malloc(sizeof(char)*LENGTH));  check_alloc(box=(long**)malloc(sizeof(long*)*NMAX));  for (i=0;i<NMAX;i++)    check_alloc(box[i]=(long*)malloc(sizeof(long)*NMAX));      for (i=0;i<LENGTH;i++)    done[i]=0;  alldone=0;  if (epsset)    EPS0 /= maxinterval;  epsilon=EPS0/EPSF;  clength=(CLENGTH <= LENGTH) ? CLENGTH-STEP : LENGTH-STEP;  comp1=COMP-1;  indexes=make_multi_index(COMP,EMBED,DELAY);  hdim=(EMBED-1)*DELAY;  check_alloc(newcast=(double*)malloc(sizeof(double)*COMP));  check_alloc(localav=(double*)malloc(sizeof(double)*DIM));  check_alloc(foreav=(double*)malloc(sizeof(double)*COMP));  check_alloc(vec=(double*)malloc(sizeof(double)*DIM));  check_alloc(mat=(double**)malloc(sizeof(double*)*DIM));  for (i=0;i<=DIM;i++)    check_alloc(mat[i]=(double*)malloc(sizeof(double)*DIM));  check_alloc(error=(double*)malloc(sizeof(double)*COMP));  for (i=0;i<COMP;i++)    error[i]=0.0;  while (!alldone) {    alldone=1;    epsilon*=EPSF;    put_in_boxes() ;    for (i=(EMBED-1)*DELAY;i<clength;i++)      if (!done[i]) {	actfound=hfind_neighbors(i);	actfound=exclude_interval(actfound,i-causal+1,				  i+causal+(EMBED-1)*DELAY-1,hfound,found);	if (actfound > MINN) {	  make_fit(actfound,i,newcast);	  for (j=0;j<COMP;j++)	    error[j] += sqr(newcast[j]-series[j][i+STEP]);	  if (verbosity&VER_USR1) {	    for (j=0;j<COMP;j++)	      individual[j][i]=(newcast[j]-series[j][i+STEP])*interval[j];	  }	  done[i]=1;	}	alldone &= done[i];      }  }  norm=((double)clength-(double)((EMBED-1)*DELAY));  if (stout) {    if (verbosity&VER_USR1) {      fprintf(stdout,"#Relative forecast errors for each component:\n");      for (i=0;i<COMP;i++) 	fprintf(stdout,"# %e\n",sqrt(error[i]/norm)/rms[i]);          for (i=(EMBED-1)*DELAY;i<clength;i++) {	for (j=0;j<COMP-1;j++)	  fprintf(stdout,"%e ",individual[j][i]);	fprintf(stdout,"%e\n",individual[COMP-1][i]);      }    }    else {      fprintf(stdout,"#Relative forecast errors for each component:\n");      for (i=0;i<COMP;i++) 	fprintf(stdout,"%e\n",sqrt(error[i]/norm)/rms[i]);    }  }  else {    fout=fopen(outfile,"w");    if (verbosity&VER_INPUT)      fprintf(stderr,"Opened %s for writing\n",outfile);    if (verbosity&VER_USR1) {      fprintf(fout,"#Relative forecast errors for each component:\n");      for (i=0;i<COMP;i++) 	fprintf(fout,"# %e\n",sqrt(error[i]/norm)/rms[i]);          for (i=(EMBED-1)*DELAY;i<clength;i++) {	for (j=0;j<COMP-1;j++)	  fprintf(fout,"%e ",individual[j][i]);	fprintf(fout,"%e\n",individual[COMP-1][i]);      }    }    else {      fprintf(fout,"#Relative forecast errors for each component:\n");      for (i=0;i<COMP;i++) 	fprintf(fout,"%e\n",sqrt(error[i]/norm)/rms[i]);    }    fclose(fout);    free(outfile);  }  return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -