📄 arima-model.c
字号:
swap=iterate[0]; for (i=0;i<poles;i++) iterate[i]=iterate[i+1]; iterate[poles]=swap; } for (i=0;i<=poles;i++) free(iterate[i]); free(iterate); for (i=0;i<dim;i++) free(myrand[i]); free(myrand);}int main(int argc,char **argv){ char stdi=0; double *pm; long i,j,iter,hj,realiter=0; unsigned int size,is,id; FILE *file; double **mat,**inverse,*vec,**coeff,**diff,**hseries; double **oldcoeff,*diffcoeff=NULL; double hdiff,**xdiff=NULL,avpm; double loglikelihood,aic,alldiff; if (scan_help(argc,argv)) show_options(argv[0]); scan_options(argc,argv);#ifndef OMIT_WHAT_I_DO if (verbosity&VER_INPUT) what_i_do(argv[0],WID_STR);#endif infile=search_datafile(argc,argv,NULL,verbosity); if (infile == NULL) stdi=1; if (outfile == NULL) { if (!stdi) { check_alloc(outfile=(char*)calloc(strlen(infile)+5,(size_t)1)); strcpy(outfile,infile); strcat(outfile,".ari"); } else { check_alloc(outfile=(char*)calloc((size_t)10,(size_t)1)); strcpy(outfile,"stdin.ari"); } } if (!stdo) test_outfile(outfile); if (column == NULL) series=(double**)get_multi_series(infile,&length,exclude,&dim,"",dimset, verbosity); else series=(double**)get_multi_series(infile,&length,exclude,&dim,column, dimset,verbosity); check_alloc(my_average=(double*)malloc(sizeof(double)*dim)); for (i=0;i<ipoles;i++) make_difference(); for (i=0;i<dim;i++) series[i] += ipoles; length -= ipoles; set_averages_to_zero(); if (poles >= length) { fprintf(stderr,"It makes no sense to have more poles than data! Exiting\n"); exit(AR_MODEL_TOO_MANY_POLES); } if (arimaset) { if ((arpoles >= length) || (mapoles >= length)) { fprintf(stderr,"It makes no sense to have more poles than data! Exiting\n"); exit(AR_MODEL_TOO_MANY_POLES); } } ardim=poles*dim; aindex=make_ar_index(); check_alloc(vec=(double*)malloc(sizeof(double)*ardim)); check_alloc(mat=(double**)malloc(sizeof(double*)*ardim)); for (i=0;i<ardim;i++) check_alloc(mat[i]=(double*)malloc(sizeof(double)*ardim)); check_alloc(coeff=(double**)malloc(sizeof(double*)*dim)); inverse=build_matrix(mat,ardim); for (i=0;i<dim;i++) { build_vector(vec,ardim,i); coeff[i]=multiply_matrix_vector(inverse,vec,ardim); } check_alloc(diff=(double**)malloc(sizeof(double*)*dim)); for (i=0;i<dim;i++) check_alloc(diff[i]=(double*)malloc(sizeof(double)*length)); pm=make_residuals(diff,coeff,ardim); free(vec); for (i=0;i<ardim;i++) { free(mat[i]); free(inverse[i]); } free(mat); free(inverse); size=ardim; if (arimaset) { offset=poles; for (i=0;i<2;i++) free(aindex[i]); free(aindex); for (i=0;i<dim;i++) free(coeff[i]); free(coeff); check_alloc(xdiff=(double**)malloc(sizeof(double*)*ITER)); for (i=0;i<ITER;i++) check_alloc(xdiff[i]=(double*)malloc(sizeof(double)*dim)); armadim=(arpoles+mapoles)*dim; aindex=make_arima_index(arpoles,mapoles); size=armadim; check_alloc(hseries=(double**)malloc(sizeof(double*)*2*dim)); for (i=0;i<dim;i++) { check_alloc(hseries[i]=(double*)malloc(sizeof(double)*length)); check_alloc(hseries[i+dim]=(double*)malloc(sizeof(double)*length)); for (j=0;j<length;j++) { hseries[i][j]=series[i][j]; hseries[i+dim][j]=diff[i][j]; } } for (i=0;i<dim;i++) free(series[i]-ipoles); free(series); series=hseries; check_alloc(oldcoeff=(double**)malloc(sizeof(double*)*dim)); for (i=0;i<dim;i++) { check_alloc(oldcoeff[i]=(double*)malloc(sizeof(double)*armadim)); for (j=0;j<armadim;j++) oldcoeff[i][j]=0.0; } check_alloc(diffcoeff=(double*)malloc(sizeof(double)*ITER)); for (iter=1;iter<=ITER;iter++) { check_alloc(vec=(double*)malloc(sizeof(double)*armadim)); check_alloc(mat=(double**)malloc(sizeof(double*)*armadim)); for (i=0;i<armadim;i++) check_alloc(mat[i]=(double*)malloc(sizeof(double)*armadim)); check_alloc(coeff=(double**)malloc(sizeof(double*)*dim)); poles=(arpoles > mapoles)? arpoles:mapoles; offset += poles; inverse=build_matrix(mat,armadim); for (i=0;i<dim;i++) { build_vector(vec,armadim,i); coeff[i]=multiply_matrix_vector(inverse,vec,armadim); } pm=make_residuals(diff,coeff,armadim); for (j=0;j<dim;j++) { hdiff=0.0; hj=j+dim; for (i=offset;i<length;i++) hdiff += sqr(series[hj][i]-diff[j][i]); for (i=0;i<length;i++) { series[hj][i]=diff[j][i]; } xdiff[iter-1][j]=sqrt(hdiff/(double)(length-offset)); } free(vec); for (i=0;i<armadim;i++) { free(mat[i]); free(inverse[i]); } free(mat); free(inverse); diffcoeff[iter-1]=0.0; for (i=0;i<dim;i++) for (j=0;j<dim;j++) { diffcoeff[iter-1] += sqr(coeff[i][j]-oldcoeff[i][j]); oldcoeff[i][j]=coeff[i][j]; } diffcoeff[iter-1]=sqrt(diffcoeff[iter-1]/(double)armadim); alldiff=xdiff[iter-1][0]; for (i=1;i<dim;i++) if (xdiff[iter-1][i] > alldiff) alldiff=xdiff[iter-1][i]; realiter=iter; if (alldiff < convergence) iter=ITER; if (iter < ITER) { for (i=0;i<dim;i++) free(coeff[i]); free(coeff); } } } if (stdo) { if (arimaset) { printf("#convergence of residuals in arima fit\n"); for (i=0;i<realiter;i++) { printf("#iteration %ld ",i+1); for (j=0;j<dim;j++) printf("%e ",xdiff[i][j]); printf("%e",diffcoeff[i]); printf("\n"); } } avpm=pm[0]*pm[0]; loglikelihood= -log(pm[0]); for (i=1;i<dim;i++) { avpm += pm[i]*pm[i]; loglikelihood -= log(pm[i]); } loglikelihood *= ((double)length); loglikelihood += -((double)length)* ((1.0+log(2.*M_PI))*dim)/2.0; avpm=sqrt(avpm/dim); printf("#average forcast error= %e\n",avpm); printf("#individual forecast errors: "); for (i=0;i<dim;i++) printf("%e ",pm[i]); printf("\n"); if (arimaset) aic=2.0*(arpoles+mapoles)-2.0*loglikelihood; else aic=2.0*poles-2.0*loglikelihood; printf("#Log-Likelihood= %e\t AIC= %e\n",loglikelihood,aic); for (i=0;i<size;i++) { id=aindex[0][i]; is=aindex[1][i]; if (id < dim) printf("#x_%u(n-%u) ",id+1,is); else printf("#e_%u(n-%u) ",id+1-dim,is); for (j=0;j<dim;j++) printf("%e ",coeff[j][i]); printf("\n"); } if (!run_model || (verbosity&VER_USR1)) { for (i=poles;i<length;i++) { if (run_model) printf("#"); for (j=0;j<dim;j++) if (verbosity&VER_USR2) printf("%e %e ",series[j][i]+my_average[j],diff[j][i]); else printf("%e ",diff[j][i]); printf("\n"); } } if (run_model && (ilength > 0)) { if (!arimaset) iterate_model(coeff,pm,diff,NULL); else iterate_arima_model(coeff,pm,diff,NULL); } } else { file=fopen(outfile,"w"); if (verbosity&VER_INPUT) fprintf(stderr,"Opened %s for output\n",outfile); if (arimaset) { fprintf(file,"#convergence of residuals in arima fit\n"); for (i=0;i<realiter;i++) { fprintf(file,"#iteration %ld ",i+1); for (j=0;j<dim;j++) fprintf(file,"%e ",xdiff[i][j]); fprintf(file,"%e",diffcoeff[i]); fprintf(file,"\n"); } } avpm=pm[0]*pm[0]; loglikelihood= -log(pm[0]); for (i=1;i<dim;i++) { avpm += pm[i]*pm[i]; loglikelihood -= log(pm[i]); } loglikelihood *= ((double)length); loglikelihood += -((double)length)* ((1.0+log(2.*M_PI))*dim)/2.0; avpm=sqrt(avpm/dim); fprintf(file,"#average forcast error= %e\n",avpm); fprintf(file,"#individual forecast errors: "); for (i=0;i<dim;i++) fprintf(file,"%e ",pm[i]); fprintf(file,"\n"); if (arimaset) aic=2.0*(arpoles+mapoles)-2.0*loglikelihood; else aic=2.0*poles-2.0*loglikelihood; fprintf(file,"#Log-Likelihood= %e\t AIC= %e\n",loglikelihood,aic); for (i=0;i<size;i++) { id=aindex[0][i]; is=aindex[1][i]; if (id < dim) fprintf(file,"#x_%u(n-%u) ",id+1,is); else fprintf(file,"#e_%u(n-%u) ",id+1-dim,is); for (j=0;j<dim;j++) fprintf(file,"%e ",coeff[j][i]); fprintf(file,"\n"); } if (!run_model || (verbosity&VER_USR1)) { for (i=poles;i<length;i++) { if (run_model) fprintf(file,"#"); for (j=0;j<dim;j++) if (verbosity&VER_USR2) fprintf(file,"%e %e ",series[j][i]+my_average[j],diff[j][i]); else fprintf(file,"%e ",diff[j][i]); fprintf(file,"\n"); } } if (run_model && (ilength > 0)) { if (!arimaset) iterate_model(coeff,pm,diff,file); else iterate_arima_model(coeff,pm,diff,file); } fclose(file); } if (outfile != NULL) free(outfile); if (infile != NULL) free(infile); for (i=0;i<dim;i++) { free(coeff[i]); free(diff[i]); free(series[i]); if (arimaset) free(series[i+dim]); } free(coeff); free(diff); free(series); free(pm); return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -