⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t_algorithms_doc.html

📁 张量分析工具
💻 HTML
📖 第 1 页 / 共 2 页
字号:
<html xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">   <head>      <meta http-equiv="Content-Type" content="text/html; charset=utf-8">         <!--This HTML is auto-generated from an M-file.To make changes, update the M-file and republish this document.      -->      <title>Algorithms for computing tensor decompositions</title>      <meta name="generator" content="MATLAB 7.2">      <meta name="date" content="2007-01-10">      <meta name="m-file" content="T_algorithms_doc"><style>body {  background-color: white;  margin:10px;}h1 {  color: #990000;   font-size: x-large;}h2 {  color: #990000;  font-size: medium;}/* Make the text shrink to fit narrow windows, but not stretch too far in wide windows.  On Gecko-based browsers, the shrink-to-fit doesn't work. */ p,h1,h2,div.content div {  /* for MATLAB's browser */  width: 600px;  /* for Mozilla, but the "width" tag overrides it anyway */  max-width: 600px;  /* for IE */  width:expression(document.body.clientWidth > 620 ? "600px": "auto" );}pre.codeinput {  background: #EEEEEE;  padding: 10px;}@media print {  pre.codeinput {word-wrap:break-word; width:100%;}} span.keyword {color: #0000FF}span.comment {color: #228B22}span.string {color: #A020F0}span.untermstring {color: #B20000}span.syscmd {color: #B28C00}pre.codeoutput {  color: #666666;  padding: 10px;}pre.error {  color: red;}p.footer {  text-align: right;  font-size: xx-small;  font-weight: lighter;  font-style: italic;  color: gray;}  </style></head>   <body>      <div class="content">         <h1>Algorithms for computing tensor decompositions</h1>         <introduction></introduction>         <h2>Contents</h2>         <div>            <ul>               <li><a href="#1">Alternating least squares for PARAFAC/CANDECOMP</a></li>               <li><a href="#6">Alternating least squares for Tucker model</a></li>            </ul>         </div>         <h2>Alternating least squares for PARAFAC/CANDECOMP<a name="1"></a></h2>         <p>The function <tt>parafac_als</tt> computes an estimate of the best rank-R PARAFAC model of a tensor X using an alternating least-squares algorithm.  The input            X can be a tensor, sptensor, ktensor, or ttensor. The result P is a ktensor.         </p><pre class="codeinput">rand(<span class="string">'state'</span>,0);X = sptenrand([5 4 3], 10)</pre><pre class="codeoutput">X is a sparse tensor of size 5 x 4 x 3 with 10 nonzeros	(1,4,1)    0.4966	(2,2,3)    0.8998	(3,2,3)    0.8216	(3,3,1)    0.6449	(3,3,3)    0.8180	(3,4,1)    0.6602	(4,1,2)    0.3420	(4,1,3)    0.2897	(5,2,2)    0.3412	(5,3,2)    0.5341</pre><pre class="codeinput">P = parafac_als(X,2)</pre><pre class="codeoutput">Alternating Least-Squares: Iter  1: fit = 3.219563e-001 fitdelta = 3.2e-001 Iter  2: fit = 3.645517e-001 fitdelta = 4.3e-002 Iter  3: fit = 3.732887e-001 fitdelta = 8.7e-003 Iter  4: fit = 3.809608e-001 fitdelta = 7.7e-003 Iter  5: fit = 4.021826e-001 fitdelta = 2.1e-002 Iter  6: fit = 4.427524e-001 fitdelta = 4.1e-002 Iter  7: fit = 4.734919e-001 fitdelta = 3.1e-002 Iter  8: fit = 4.848760e-001 fitdelta = 1.1e-002 Iter  9: fit = 4.890031e-001 fitdelta = 4.1e-003 Iter 10: fit = 4.907726e-001 fitdelta = 1.8e-003 Iter 11: fit = 4.916244e-001 fitdelta = 8.5e-004 Iter 12: fit = 4.920996e-001 fitdelta = 4.8e-004 Iter 13: fit = 4.924246e-001 fitdelta = 3.2e-004 Iter 14: fit = 4.926962e-001 fitdelta = 2.7e-004 Iter 15: fit = 4.929575e-001 fitdelta = 2.6e-004 Iter 16: fit = 4.932285e-001 fitdelta = 2.7e-004 Iter 17: fit = 4.935198e-001 fitdelta = 2.9e-004 Iter 18: fit = 4.938385e-001 fitdelta = 3.2e-004 Iter 19: fit = 4.941904e-001 fitdelta = 3.5e-004 Iter 20: fit = 4.945813e-001 fitdelta = 3.9e-004 Iter 21: fit = 4.950178e-001 fitdelta = 4.4e-004 Iter 22: fit = 4.955072e-001 fitdelta = 4.9e-004 Iter 23: fit = 4.960583e-001 fitdelta = 5.5e-004 Iter 24: fit = 4.966814e-001 fitdelta = 6.2e-004 Iter 25: fit = 4.973882e-001 fitdelta = 7.1e-004 Iter 26: fit = 4.981921e-001 fitdelta = 8.0e-004 Iter 27: fit = 4.991075e-001 fitdelta = 9.2e-004 Iter 28: fit = 5.001490e-001 fitdelta = 1.0e-003 Iter 29: fit = 5.013282e-001 fitdelta = 1.2e-003 Iter 30: fit = 5.026502e-001 fitdelta = 1.3e-003 Iter 31: fit = 5.041052e-001 fitdelta = 1.5e-003 Iter 32: fit = 5.056587e-001 fitdelta = 1.6e-003 Iter 33: fit = 5.072418e-001 fitdelta = 1.6e-003 Iter 34: fit = 5.087490e-001 fitdelta = 1.5e-003 Iter 35: fit = 5.100586e-001 fitdelta = 1.3e-003 Iter 36: fit = 5.110745e-001 fitdelta = 1.0e-003 Iter 37: fit = 5.117692e-001 fitdelta = 6.9e-004 Iter 38: fit = 5.121888e-001 fitdelta = 4.2e-004 Iter 39: fit = 5.124165e-001 fitdelta = 2.3e-004 Iter 40: fit = 5.125308e-001 fitdelta = 1.1e-004 Iter 41: fit = 5.125856e-001 fitdelta = 5.5e-005P is a ktensor of size 5 x 4 x 3	P.lambda = [ 1.3189      1.1109 ]	P.U{1} = 		    0.0019    0.2743		    0.6406   -0.0177		    0.7679    0.9615		   -0.0000    0.0000		   -0.0000   -0.0000	P.U{2} = 		   -0.0000    0.0000		    0.9413   -0.0855		    0.2693    0.7083		   -0.2036    0.7007	P.U{3} = 		    0.0402    0.8828		   -0.0000   -0.0000		    0.9992    0.4698</pre><pre class="codeinput">P = parafac_als(X,2,struct(<span class="string">'dimorder'</span>,[3 2 1]))</pre><pre class="codeoutput">Alternating Least-Squares: Iter  1: fit = 3.575290e-001 fitdelta = 3.6e-001 Iter  2: fit = 4.968299e-001 fitdelta = 1.4e-001 Iter  3: fit = 5.047740e-001 fitdelta = 7.9e-003 Iter  4: fit = 5.084288e-001 fitdelta = 3.7e-003 Iter  5: fit = 5.103942e-001 fitdelta = 2.0e-003 Iter  6: fit = 5.114388e-001 fitdelta = 1.0e-003 Iter  7: fit = 5.119941e-001 fitdelta = 5.6e-004 Iter  8: fit = 5.122906e-001 fitdelta = 3.0e-004 Iter  9: fit = 5.124494e-001 fitdelta = 1.6e-004 Iter 10: fit = 5.125349e-001 fitdelta = 8.5e-005P is a ktensor of size 5 x 4 x 3	P.lambda = [ 1.3217      1.0933 ]	P.U{1} = 		   -0.0029    0.2940		    0.6361   -0.0293		    0.7716    0.9554		    0.0000   -0.0000		    0.0000    0.0000	P.U{2} = 		    0.0000   -0.0000		    0.9356   -0.0865		    0.3018    0.6913		   -0.1832    0.7174	P.U{3} = 		    0.0483    0.9024		    0.0000    0.0000		    0.9988    0.4308</pre><pre class="codeinput">P = parafac_als(X,2,struct(<span class="string">'dimorder'</span>,[3 2 1],<span class="string">'init'</span>,<span class="string">'nvecs'</span>))</pre><pre class="codeoutput">  Computing 2 leading e-vectors for factor 2.  Computing 2 leading e-vectors for factor 1.Alternating Least-Squares: Iter  1: fit = 3.767513e-001 fitdelta = 3.8e-001 Iter  2: fit = 4.273501e-001 fitdelta = 5.1e-002 Iter  3: fit = 4.966758e-001 fitdelta = 6.9e-002 Iter  4: fit = 5.061467e-001 fitdelta = 9.5e-003 Iter  5: fit = 5.092466e-001 fitdelta = 3.1e-003 Iter  6: fit = 5.108361e-001 fitdelta = 1.6e-003 Iter  7: fit = 5.116747e-001 fitdelta = 8.4e-004 Iter  8: fit = 5.121203e-001 fitdelta = 4.5e-004 Iter  9: fit = 5.123582e-001 fitdelta = 2.4e-004 Iter 10: fit = 5.124859e-001 fitdelta = 1.3e-004 Iter 11: fit = 5.125545e-001 fitdelta = 6.9e-005P is a ktensor of size 5 x 4 x 3	P.lambda = [ 1.3212      1.0943 ]	P.U{1} = 		   -0.0028    0.2928		    0.6367   -0.0289		    0.7711    0.9557		    0.0000   -0.0000		    0.0000    0.0000	P.U{2} = 		    0.0000   -0.0000		    0.9360   -0.0856		    0.2999    0.6927		   -0.1842    0.7161	P.U{3} = 		    0.0471    0.9012		    0.0000    0.0000		    0.9989    0.4334</pre><pre class="codeinput">U0 = {rand(5,2),rand(4,2),[]}; <span class="comment">%&lt;-- Initial guess for factors of P</span>P = parafac_als(X,2,struct(<span class="string">'dimorder'</span>,[3 2 1],<span class="string">'init'</span>,{U0}))</pre><pre class="codeoutput">Alternating Least-Squares: Iter  1: fit = 4.361298e-001 fitdelta = 4.4e-001 Iter  2: fit = 5.082769e-001 fitdelta = 7.2e-002 Iter  3: fit = 5.105738e-001 fitdelta = 2.3e-003 Iter  4: fit = 5.116456e-001 fitdelta = 1.1e-003 Iter  5: fit = 5.121929e-001 fitdelta = 5.5e-004 Iter  6: fit = 5.124502e-001 fitdelta = 2.6e-004 Iter  7: fit = 5.125615e-001 fitdelta = 1.1e-004 Iter  8: fit = 5.126068e-001 fitdelta = 4.5e-005P is a ktensor of size 5 x 4 x 3	P.lambda = [ 1.3217      1.1037 ]	P.U{1} = 		   -0.0007    0.2835

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -