⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 computationmanager.java

📁 java实现的隐马尔科夫模型
💻 JAVA
字号:
/* jahmm package - v0.3.1 *//* *  Copyright (c) 2004, Jean-Marc Francois. * *  This file is part of Jahmm. *  Jahmm is free software; you can redistribute it and/or modify *  it under the terms of the GNU General Public License as published by *  the Free Software Foundation; either version 2 of the License, or *  (at your option) any later version. * *  Jahmm is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *  GNU General Public License for more details. * *  You should have received a copy of the GNU General Public License *  along with Jahmm; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */package be.ac.ulg.montefiore.run.jahmm.apps;import java.util.*;import be.ac.ulg.montefiore.run.jahmm.*;import be.ac.ulg.montefiore.run.jahmm.gui.*;import be.ac.ulg.montefiore.run.jahmm.learn.*;import be.ac.ulg.montefiore.run.jahmm.toolbox.*;/** * Computes new (state or observation) sequences and HMM. */public class ComputationManager {        static public Hmm learn(String name, ObservationSequences sequences,			    OpdfFactory opdfFactory, int nbStates) {	Vector<?> nsequences = GenericsLayer.convertSequences(sequences);		KMeansLearner learner = new KMeansLearner(nbStates,						  opdfFactory,						  nsequences);		return new Hmm(name, learner.learn());    }            static public double probability(Hmm hmm, List<Observation> sequence) {	Vector<?> nSequence =	    GenericsLayer.convertSequence((ArrayList<Observation>) sequence);	return hmm.probability(nSequence);    }            static public double lnProbability(Hmm hmm, List<Observation> sequence) {	Vector<?> nSequence =	    GenericsLayer.convertSequence((ArrayList<Observation>) sequence);	return hmm.lnProbability(nSequence);    }        static public ArrayList<Integer> mostLikelySequence(Hmm hmm,							List<Observation>							sequence) {	Vector<?> nSequence =	    GenericsLayer.convertSequence((ArrayList<Observation>) sequence);	ArrayList<Integer> mlss = new ArrayList<Integer>();	int[] imlss = hmm.mostLikelyStateSequence(nSequence);	for (int i = 0; i < imlss.length; i++)	    mlss.add(new Integer(imlss[i]));		return new ArrayList<Integer>(mlss);    }        static public ObservationSequences generateSequences(String name, Hmm hmm, 							  int nb, int length) {	Opdf opdf = hmm.getOpdf(0);	int type, dimension;		if (opdf instanceof OpdfInteger) { // Discrete distribution	    type = ObservationSequences.INTEGER;	    dimension = ((OpdfInteger) opdf).nbEntries();	} else { // Multi gaussian distribution	    type = ObservationSequences.VECTOR;	    dimension = ((OpdfMultiGaussian) opdf).dimension();	}		ObservationSequences sequences =	    new ObservationSequences(name, type, dimension);	MarkovGenerator generator = new MarkovGenerator(hmm);	Vector<Vector<Observation>> vector = new Vector<Vector<Observation>>();		for (int i = 0; i < nb; i++) 	    vector.add(generator.observationSequence(length));		sequences.addAll(GenericsLayer.convertVector(vector));		return sequences;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -