📄 computationmanager.java
字号:
/* jahmm package - v0.3.1 *//* * Copyright (c) 2004, Jean-Marc Francois. * * This file is part of Jahmm. * Jahmm is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * Jahmm is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Jahmm; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */package be.ac.ulg.montefiore.run.jahmm.apps;import java.util.*;import be.ac.ulg.montefiore.run.jahmm.*;import be.ac.ulg.montefiore.run.jahmm.gui.*;import be.ac.ulg.montefiore.run.jahmm.learn.*;import be.ac.ulg.montefiore.run.jahmm.toolbox.*;/** * Computes new (state or observation) sequences and HMM. */public class ComputationManager { static public Hmm learn(String name, ObservationSequences sequences, OpdfFactory opdfFactory, int nbStates) { Vector<?> nsequences = GenericsLayer.convertSequences(sequences); KMeansLearner learner = new KMeansLearner(nbStates, opdfFactory, nsequences); return new Hmm(name, learner.learn()); } static public double probability(Hmm hmm, List<Observation> sequence) { Vector<?> nSequence = GenericsLayer.convertSequence((ArrayList<Observation>) sequence); return hmm.probability(nSequence); } static public double lnProbability(Hmm hmm, List<Observation> sequence) { Vector<?> nSequence = GenericsLayer.convertSequence((ArrayList<Observation>) sequence); return hmm.lnProbability(nSequence); } static public ArrayList<Integer> mostLikelySequence(Hmm hmm, List<Observation> sequence) { Vector<?> nSequence = GenericsLayer.convertSequence((ArrayList<Observation>) sequence); ArrayList<Integer> mlss = new ArrayList<Integer>(); int[] imlss = hmm.mostLikelyStateSequence(nSequence); for (int i = 0; i < imlss.length; i++) mlss.add(new Integer(imlss[i])); return new ArrayList<Integer>(mlss); } static public ObservationSequences generateSequences(String name, Hmm hmm, int nb, int length) { Opdf opdf = hmm.getOpdf(0); int type, dimension; if (opdf instanceof OpdfInteger) { // Discrete distribution type = ObservationSequences.INTEGER; dimension = ((OpdfInteger) opdf).nbEntries(); } else { // Multi gaussian distribution type = ObservationSequences.VECTOR; dimension = ((OpdfMultiGaussian) opdf).dimension(); } ObservationSequences sequences = new ObservationSequences(name, type, dimension); MarkovGenerator generator = new MarkovGenerator(hmm); Vector<Vector<Observation>> vector = new Vector<Vector<Observation>>(); for (int i = 0; i < nb; i++) vector.add(generator.observationSequence(length)); sequences.addAll(GenericsLayer.convertVector(vector)); return sequences; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -