⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hmmexample.java

📁 java实现的隐马尔科夫模型
💻 JAVA
字号:
package be.ac.ulg.montefiore.run.jahmm.test;/* * HmmExample.java: A simple example file for the jahmm package. * * Written by Jean-Marc Francois <francois-jahmm@montefiore.ulg.ac.be> * * The content of this file is public-domain. * * Compile with the following command: *      javac HmmExample.java * And run with: *      java HmmExample * * This file (or a newer version) can be found at this URL: *      http://www.run.montefiore.ulg.ac.be/~francois/software/jahmm/example/ * * * Changelog: * 2004-03-01: Creation. (JMF) * 2004-04-27: Adapted to Jahmm 0.2.4. (JMF) * 2005-01-31: Minor adaption for release 0.3.0. (JMF) */import java.util.*;import be.ac.ulg.montefiore.run.jahmm.*;import be.ac.ulg.montefiore.run.jahmm.toolbox.*;import be.ac.ulg.montefiore.run.jahmm.learn.*;import be.ac.ulg.montefiore.run.jahmm.draw.*;public class HmmExample {    static public void main(String[] argv) 	throws java.io.IOException {	Hmm hmm = buildHmm();		/* Observation sequence generation */	MarkovGenerator mg = new MarkovGenerator(hmm);	Vector sequence = mg.observationSequence(1000);	Vector sequences = new Vector();	sequences.add(sequence);	/* Baum-Welch learning */	BaumWelchLearner bwl =	    new BaumWelchLearner(2, new OpdfIntegerFactory(2), sequences);	Hmm learntHmm = bwl.iterate(buildInitHmm());	(new HmmIntegerDrawer()).write(learntHmm, "learnt1Hmm.dot");		for (int i = 0; i < 10; i++) {	    KullbackLeiblerDistanceCalculator klc =		new KullbackLeiblerDistanceCalculator(hmm, learntHmm);	    System.out.println(i + " " + klc.distance());	    learntHmm = bwl.iterate(learntHmm);	}	/* Write the final result to a 'dot' (graphviz) file. */	(new HmmIntegerDrawer()).write(learntHmm, "learnt11Hmm.dot");    }    /* The HMM this example is based on */    static Hmm buildHmm() {       	Hmm hmm = new Hmm(2, new OpdfIntegerFactory(2));		hmm.setPi(0, 0.95);	hmm.setPi(1, 0.05);	hmm.setOpdf(0, new OpdfInteger(new double[] {0.95, 0.05}));	hmm.setOpdf(1, new OpdfInteger(new double[] {0.2, 0.8}));	hmm.setAij(0, 1, 0.05);	hmm.setAij(0, 0, 0.95);	hmm.setAij(1, 0, 0.1);	hmm.setAij(1, 1, 0.9);	return hmm;    }    /* Initial guess for the Baum-Welch algorithm */    static Hmm buildInitHmm() {	Hmm hmm = new Hmm(2, new OpdfIntegerFactory(2));		hmm.setPi(0, 0.90);	hmm.setPi(1, 0.10);	hmm.setOpdf(0, new OpdfInteger(new double[] {0.8, 0.2}));	hmm.setOpdf(1, new OpdfInteger(new double[] {0.1, 0.9}));	hmm.setAij(0, 1, 0.2);	hmm.setAij(0, 0, 0.8);	hmm.setAij(1, 0, 0.15);	hmm.setAij(1, 1, 0.85);	return hmm;	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -