📄 hmmexample.java
字号:
package be.ac.ulg.montefiore.run.jahmm.test;/* * HmmExample.java: A simple example file for the jahmm package. * * Written by Jean-Marc Francois <francois-jahmm@montefiore.ulg.ac.be> * * The content of this file is public-domain. * * Compile with the following command: * javac HmmExample.java * And run with: * java HmmExample * * This file (or a newer version) can be found at this URL: * http://www.run.montefiore.ulg.ac.be/~francois/software/jahmm/example/ * * * Changelog: * 2004-03-01: Creation. (JMF) * 2004-04-27: Adapted to Jahmm 0.2.4. (JMF) * 2005-01-31: Minor adaption for release 0.3.0. (JMF) */import java.util.*;import be.ac.ulg.montefiore.run.jahmm.*;import be.ac.ulg.montefiore.run.jahmm.toolbox.*;import be.ac.ulg.montefiore.run.jahmm.learn.*;import be.ac.ulg.montefiore.run.jahmm.draw.*;public class HmmExample { static public void main(String[] argv) throws java.io.IOException { Hmm hmm = buildHmm(); /* Observation sequence generation */ MarkovGenerator mg = new MarkovGenerator(hmm); Vector sequence = mg.observationSequence(1000); Vector sequences = new Vector(); sequences.add(sequence); /* Baum-Welch learning */ BaumWelchLearner bwl = new BaumWelchLearner(2, new OpdfIntegerFactory(2), sequences); Hmm learntHmm = bwl.iterate(buildInitHmm()); (new HmmIntegerDrawer()).write(learntHmm, "learnt1Hmm.dot"); for (int i = 0; i < 10; i++) { KullbackLeiblerDistanceCalculator klc = new KullbackLeiblerDistanceCalculator(hmm, learntHmm); System.out.println(i + " " + klc.distance()); learntHmm = bwl.iterate(learntHmm); } /* Write the final result to a 'dot' (graphviz) file. */ (new HmmIntegerDrawer()).write(learntHmm, "learnt11Hmm.dot"); } /* The HMM this example is based on */ static Hmm buildHmm() { Hmm hmm = new Hmm(2, new OpdfIntegerFactory(2)); hmm.setPi(0, 0.95); hmm.setPi(1, 0.05); hmm.setOpdf(0, new OpdfInteger(new double[] {0.95, 0.05})); hmm.setOpdf(1, new OpdfInteger(new double[] {0.2, 0.8})); hmm.setAij(0, 1, 0.05); hmm.setAij(0, 0, 0.95); hmm.setAij(1, 0, 0.1); hmm.setAij(1, 1, 0.9); return hmm; } /* Initial guess for the Baum-Welch algorithm */ static Hmm buildInitHmm() { Hmm hmm = new Hmm(2, new OpdfIntegerFactory(2)); hmm.setPi(0, 0.90); hmm.setPi(1, 0.10); hmm.setOpdf(0, new OpdfInteger(new double[] {0.8, 0.2})); hmm.setOpdf(1, new OpdfInteger(new double[] {0.1, 0.9})); hmm.setAij(0, 1, 0.2); hmm.setAij(0, 0, 0.8); hmm.setAij(1, 0, 0.15); hmm.setAij(1, 1, 0.85); return hmm; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -