📄 baumwelchscaled.java
字号:
package be.ac.ulg.montefiore.run.jahmm.test;import java.util.*;import be.ac.ulg.montefiore.run.jahmm.*;import be.ac.ulg.montefiore.run.jahmm.toolbox.*;import be.ac.ulg.montefiore.run.jahmm.learn.*;import be.ac.ulg.montefiore.run.jahmm.draw.*;/* When the sequence generated by MarkovGenerator mg has a length > 1000, the unscaled Baum-Welch learner can't give any result because of underflows. */public class BaumWelchScaled { /* A simple example of the HMM package */ /* See http://www.run.montefiore.ulg.ac.be/~francois/software/hmm/ */ static public void main(String[] argv) throws java.io.IOException { Hmm hmm = buildHmm(); /* Observation sequence generation */ MarkovGenerator mg = new MarkovGenerator(hmm); Vector sequence = mg.observationSequence(100000); Vector sequences = new Vector(); sequences.add(sequence); /* Baum-Welch learning */ BaumWelchScaledLearner bwl = new BaumWelchScaledLearner(2, new OpdfIntegerFactory(2), sequences); Hmm learntHmm = bwl.iterate(buildInitHmm()); (new HmmIntegerDrawer()).write(learntHmm, "learntHmm.dot"); } /* The HMM this example is based on */ static Hmm buildHmm() { Hmm hmm = new Hmm(2, new OpdfIntegerFactory(2)); hmm.setPi(0, 0.95); hmm.setPi(1, 0.05); hmm.setOpdf(0, new OpdfInteger(new double[] {0.95, 0.05})); hmm.setOpdf(1, new OpdfInteger(new double[] {0.2, 0.8})); hmm.setAij(0, 1, 0.05); hmm.setAij(0, 0, 0.95); hmm.setAij(1, 0, 0.1); hmm.setAij(1, 1, 0.9); return hmm; } /* Initial guess for the Baum-Welch algorithm */ static Hmm buildInitHmm() { Hmm hmm = new Hmm(2, new OpdfIntegerFactory(2)); hmm.setPi(0, 0.90); hmm.setPi(1, 0.10); hmm.setOpdf(0, new OpdfInteger(new double[] {0.8, 0.2})); hmm.setOpdf(1, new OpdfInteger(new double[] {0.1, 0.9})); hmm.setAij(0, 1, 0.2); hmm.setAij(0, 0, 0.8); hmm.setAij(1, 0, 0.15); hmm.setAij(1, 1, 0.85); return hmm; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -