📄 svm.m4
字号:
int i; int n = (int)(param.nu*prob.l); // # of alpha's at upper bound for(i=0;i<n;i++) alpha[i] = 1; if(n<prob.l) alpha[n] = param.nu * prob.l - n; for(i=n+1;i<l;i++) alpha[i] = 0; for(i=0;i<l;i++) { zeros[i] = 0; ones[i] = 1; } Solver s = new Solver(); s.Solve(l, new ONE_CLASS_Q(prob,param), zeros, ones, alpha, 1.0, 1.0, param.eps, si, param.shrinking); } private static void solve_epsilon_svr(svm_problem prob, svm_parameter param, double[] alpha, Solver.SolutionInfo si) { int l = prob.l; double[] alpha2 = new double[2*l]; double[] linear_term = new double[2*l]; byte[] y = new byte[2*l]; int i; for(i=0;i<l;i++) { alpha2[i] = 0; linear_term[i] = param.p - prob.y[i]; y[i] = 1; alpha2[i+l] = 0; linear_term[i+l] = param.p + prob.y[i]; y[i+l] = -1; } Solver s = new Solver(); s.Solve(2*l, new SVR_Q(prob,param), linear_term, y, alpha2, param.C, param.C, param.eps, si, param.shrinking); double sum_alpha = 0; for(i=0;i<l;i++) { alpha[i] = alpha2[i] - alpha2[i+l]; sum_alpha += Math.abs(alpha[i]); } System.out.print("nu = "+sum_alpha/(param.C*l)+"\n"); } private static void solve_nu_svr(svm_problem prob, svm_parameter param, double[] alpha, Solver.SolutionInfo si) { int l = prob.l; double C = param.C; double[] alpha2 = new double[2*l]; double[] linear_term = new double[2*l]; byte[] y = new byte[2*l]; int i; double sum = C * param.nu * l / 2; for(i=0;i<l;i++) { alpha2[i] = alpha2[i+l] = Math.min(sum,C); sum -= alpha2[i]; linear_term[i] = - prob.y[i]; y[i] = 1; linear_term[i+l] = prob.y[i]; y[i+l] = -1; } Solver_NU s = new Solver_NU(); s.Solve(2*l, new SVR_Q(prob,param), linear_term, y, alpha2, C, C, param.eps, si, param.shrinking); System.out.print("epsilon = "+(-si.r)+"\n"); for(i=0;i<l;i++) alpha[i] = alpha2[i] - alpha2[i+l]; } // // decision_function // static class decision_function { double[] alpha; double rho; }; static decision_function svm_train_one( svm_problem prob, svm_parameter param, double Cp, double Cn) { double[] alpha = new double[prob.l]; Solver.SolutionInfo si = new Solver.SolutionInfo(); switch(param.svm_type) { case svm_parameter.C_SVC: solve_c_svc(prob,param,alpha,si,Cp,Cn); break; case svm_parameter.NU_SVC: solve_nu_svc(prob,param,alpha,si); break; case svm_parameter.ONE_CLASS: solve_one_class(prob,param,alpha,si); break; case svm_parameter.EPSILON_SVR: solve_epsilon_svr(prob,param,alpha,si); break; case svm_parameter.NU_SVR: solve_nu_svr(prob,param,alpha,si); break; } System.out.print("obj = "+si.obj+", rho = "+si.rho+"\n"); // output SVs int nSV = 0; int nBSV = 0; for(int i=0;i<prob.l;i++) { if(Math.abs(alpha[i]) > 0) { ++nSV; if(prob.y[i] > 0) { if(Math.abs(alpha[i]) >= si.upper_bound_p) ++nBSV; } else { if(Math.abs(alpha[i]) >= si.upper_bound_n) ++nBSV; } } } System.out.print("nSV = "+nSV+", nBSV = "+nBSV+"\n"); decision_function f = new decision_function(); f.alpha = alpha; f.rho = si.rho; return f; } // Platt's binary SVM Probablistic Output: an improvement from Lin et al. private static void sigmoid_train(int l, double[] dec_values, double[] labels, double[] probAB) { double A, B; double prior1=0, prior0 = 0; int i; for (i=0;i<l;i++) if (labels[i] > 0) prior1+=1; else prior0+=1; int max_iter=100; // Maximal number of iterations double min_step=1e-10; // Minimal step taken in line search double sigma=1e-3; // For numerically strict PD of Hessian double eps=1e-5; double hiTarget=(prior1+1.0)/(prior1+2.0); double loTarget=1/(prior0+2.0); double[] t= new double[l]; double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize; double newA,newB,newf,d1,d2; int iter; // Initial Point and Initial Fun Value A=0.0; B=Math.log((prior0+1.0)/(prior1+1.0)); double fval = 0.0; for (i=0;i<l;i++) { if (labels[i]>0) t[i]=hiTarget; else t[i]=loTarget; fApB = dec_values[i]*A+B; if (fApB>=0) fval += t[i]*fApB + Math.log(1+Math.exp(-fApB)); else fval += (t[i] - 1)*fApB +Math.log(1+Math.exp(fApB)); } for (iter=0;iter<max_iter;iter++) { // Update Gradient and Hessian (use H' = H + sigma I) h11=sigma; // numerically ensures strict PD h22=sigma; h21=0.0;g1=0.0;g2=0.0; for (i=0;i<l;i++) { fApB = dec_values[i]*A+B; if (fApB >= 0) { p=Math.exp(-fApB)/(1.0+Math.exp(-fApB)); q=1.0/(1.0+Math.exp(-fApB)); } else { p=1.0/(1.0+Math.exp(fApB)); q=Math.exp(fApB)/(1.0+Math.exp(fApB)); } d2=p*q; h11+=dec_values[i]*dec_values[i]*d2; h22+=d2; h21+=dec_values[i]*d2; d1=t[i]-p; g1+=dec_values[i]*d1; g2+=d1; } // Stopping Criteria if (Math.abs(g1)<eps && Math.abs(g2)<eps) break; // Finding Newton direction: -inv(H') * g det=h11*h22-h21*h21; dA=-(h22*g1 - h21 * g2) / det; dB=-(-h21*g1+ h11 * g2) / det; gd=g1*dA+g2*dB; stepsize = 1; // Line Search while (stepsize >= min_step) { newA = A + stepsize * dA; newB = B + stepsize * dB; // New function value newf = 0.0; for (i=0;i<l;i++) { fApB = dec_values[i]*newA+newB; if (fApB >= 0) newf += t[i]*fApB + Math.log(1+Math.exp(-fApB)); else newf += (t[i] - 1)*fApB +Math.log(1+Math.exp(fApB)); } // Check sufficient decrease if (newf<fval+0.0001*stepsize*gd) { A=newA;B=newB;fval=newf; break; } else stepsize = stepsize / 2.0; } if (stepsize < min_step) { System.err.print("Line search fails in two-class probability estimates\n"); break; } } if (iter>=max_iter) System.err.print("Reaching maximal iterations in two-class probability estimates\n"); probAB[0]=A;probAB[1]=B; } private static double sigmoid_predict(double decision_value, double A, double B) { double fApB = decision_value*A+B; if (fApB >= 0) return Math.exp(-fApB)/(1.0+Math.exp(-fApB)); else return 1.0/(1+Math.exp(fApB)) ; } // Method 2 from the multiclass_prob paper by Wu, Lin, and Weng private static void multiclass_probability(int k, double[][] r, double[] p) { int t,j; int iter = 0, max_iter=Math.max(100,k); double[][] Q=new double[k][k]; double[] Qp= new double[k]; double pQp, eps=0.005/k; for (t=0;t<k;t++) { p[t]=1.0/k; // Valid if k = 1 Q[t][t]=0; for (j=0;j<t;j++) { Q[t][t]+=r[j][t]*r[j][t]; Q[t][j]=Q[j][t]; } for (j=t+1;j<k;j++) { Q[t][t]+=r[j][t]*r[j][t]; Q[t][j]=-r[j][t]*r[t][j]; } } for (iter=0;iter<max_iter;iter++) { // stopping condition, recalculate QP,pQP for numerical accuracy pQp=0; for (t=0;t<k;t++) { Qp[t]=0; for (j=0;j<k;j++) Qp[t]+=Q[t][j]*p[j]; pQp+=p[t]*Qp[t]; } double max_error=0; for (t=0;t<k;t++) { double error=Math.abs(Qp[t]-pQp); if (error>max_error) max_error=error; } if (max_error<eps) break; for (t=0;t<k;t++) { double diff=(-Qp[t]+pQp)/Q[t][t]; p[t]+=diff; pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff); for (j=0;j<k;j++) { Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff); p[j]/=(1+diff); } } } if (iter>=max_iter) System.err.print("Exceeds max_iter in multiclass_prob\n"); } // Cross-validation decision values for probability estimates private static void svm_binary_svc_probability(svm_problem prob, svm_parameter param, double Cp, double Cn, double[] probAB) { int i; int nr_fold = 5; int[] perm = new int[prob.l]; double[] dec_values = new double[prob.l]; // random shuffle for(i=0;i<prob.l;i++) perm[i]=i; for(i=0;i<prob.l;i++) { int j = i+(int)(Math.random()*(prob.l-i)); swap(int,perm[i],perm[j]); } for(i=0;i<nr_fold;i++) { int begin = i*prob.l/nr_fold; int end = (i+1)*prob.l/nr_fold; int j,k; svm_problem subprob = new svm_problem(); subprob.l = prob.l-(end-begin); subprob.x = new svm_node[subprob.l][]; subprob.y = new double[subprob.l]; k=0; for(j=0;j<begin;j++) { subprob.x[k] = prob.x[perm[j]]; subprob.y[k] = prob.y[perm[j]]; ++k; } for(j=end;j<prob.l;j++) { subprob.x[k] = prob.x[perm[j]]; subprob.y[k] = prob.y[perm[j]]; ++k; } int p_count=0,n_count=0; for(j=0;j<k;j++) if(subprob.y[j]>0) p_count++; else n_count++; if(p_count==0 && n_count==0) for(j=begin;j<end;j++) dec_values[perm[j]] = 0; else if(p_count > 0 && n_count == 0) for(j=begin;j<end;j++) dec_values[perm[j]] = 1; else if(p_count == 0 && n_count > 0) for(j=begin;j<end;j++) dec_values[perm[j]] = -1; else { svm_parameter subparam = (svm_parameter)param.clone(); subparam.probability=0; subparam.C=1.0; subparam.nr_weight=2; subparam.weight_label = new int[2]; subparam.weight = new double[2]; subparam.weight_label[0]=+1; subparam.weight_label[1]=-1; subparam.weight[0]=Cp; subparam.weight[1]=Cn; svm_model submodel = svm_train(subprob,subparam); for(j=begin;j<end;j++) { double[] dec_value=new double[1]; svm_predict_values(submodel,prob.x[perm[j]],dec_value); dec_values[perm[j]]=dec_value[0]; // ensure +1 -1 order; reason not using CV subroutine dec_values[perm[j]] *= submodel.label[0]; } } } sigmoid_train(prob.l,dec_values,prob.y,probAB); } // Return parameter of a Laplace distribution private static double svm_svr_probability(svm_problem prob, svm_parameter param) { int i; int nr_fold = 5; double[] ymv = new double[prob.l]; double mae = 0; svm_parameter newparam = (svm_parameter)param.clone(); newparam.probability = 0; svm_cross_validation(prob,newparam,nr_fold,ymv); for(i=0;i<prob.l;i++) { ymv[i]=prob.y[i]-ymv[i]; mae += Math.abs(ymv[i]); } mae /= prob.l; double std=Math.sqrt(2*mae*mae); int count=0; mae=0; for(i=0;i<prob.l;i++) if (Math.abs(ymv[i]) > 5*std) count=count+1; else mae+=Math.abs(ymv[i]); mae /= (prob.l-count); System.err.print("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma="+mae+"\n"); return mae; } // label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data // perm, length l, must be allocated before calling this subroutine private static void svm_group_classes(svm_problem prob, int[] nr_class_ret, int[][] label_ret, int[][] start_ret, int[][] count_ret, int[] perm) { int l = prob.l; int max_nr_class = 16; int nr_class = 0; int[] label = new int[max_nr_class]; int[] count = new int[max_nr_class]; int[] data_label = new int[l]; int i; for(i=0;i<l;i++) { int this_label = (int)(prob.y[i]); int j; for(j=0;j<nr_class;j++) { if(this_label == label[j]) { ++count[j]; break; } } data_label[i] = j; if(j == nr_class) { if(nr_class == max_nr_class) { max_nr_class *= 2; int[] new_data = new int[max_nr_class]; System.arraycopy(label,0,new_data,0,label.length); label = new_data; new_data = new int[max_nr_class]; System.arraycopy(count,0,new_data,0,count.length); count = new_data; } label[nr_class] = this_label; count[nr_class] = 1; ++nr_class; } } int[] start = new int[nr_class]; start[0] = 0; for(i=1;i<nr_class;i++) start[i] = start[i-1]+count[i-1]; for(i=0;i<l;i++) { perm[start[data_label[i]]] = i; ++start[data_label[i]]; } start[0] = 0; for(i=1;i<nr_class;i++) start[i] = start[i-1]+count[i-1]; nr_class_ret[0] = nr_class; label_ret[0] = label; start_ret[0] = start; count_ret[0] = count; } // // Interface functions // public static svm_model svm_train(svm_problem prob, svm_parameter param) { svm_model model = new svm_model(); model.param = param; if(param.svm_type == svm_parameter.ONE_CLASS || param.svm_type == svm_parameter.EPSILON_SVR || param.svm_type == svm_parameter.NU_SVR) { // regression or one-class-svm model.nr_class = 2; model.label = null; model.nSV = null; model.probA = null; model.probB = null; model.sv_coef = new double[1][]; if(param.probability == 1 && (param.svm_type == svm_parameter.EPSILON_SVR || param.svm_type == svm_parameter.NU_SVR)) { model.probA = new double[1]; model.probA[0] = svm_svr_probability(prob,param); } decision_function f = svm_train_one(prob,param,0,0); model.rho = new double[1]; model.rho[0] = f.rho; int nSV = 0; int i; for(i=0;i<prob.l;i++) if(Math.abs(f.alpha[i]) > 0) ++nSV; model.l = nSV; model.SV = new svm_node[nSV][]; model.sv_coef[0] = new double[nSV]; int j = 0; for(i=0;i<prob.l;i++) if(Math.abs(f.alpha[i]) > 0) { model.SV[j] = prob.x[i]; model.sv_coef[0][j] = f.alpha[i]; ++j; } } else { // classification int l = prob.l; int[] tmp_nr_class = new int[1]; int[][] tmp_label = new int[1][]; int[][] tmp_start = new int[1][]; int[][] tmp_count = new int[1][]; int[] perm = new int[l]; // group training data of the same class svm_group_classes(prob,tmp_nr_class,tmp_label,tmp_start,tmp_count,perm); int nr_class = tmp_nr_class[0]; int[] label = tmp_label[0]; int[] start = tmp_start[0]; int[] count = tmp_count[0]; svm_node[][] x = new svm_node[l][]; int i; for(i=0;i<l;i++) x[i] = prob.x[perm[i]]; // calculate weighted C double[] weighted_C = new double[nr_class]; for(i=0;i<nr_class;i++) weighted_C[i] = param.C; for(i=0;i<param.nr_weight;i++) { int j; for(j=0;j<nr_class;j++) if(param.weight_label[i] == label[j]) break; if(j == nr_class) System.err.print("warning: class label "+param.weight_label[i]+" specified in weight is not found\n"); else weighted_C[j] *= param.weight[i]; } // train k*(k-1)/2 models boolean[] nonzero = new boolean[l]; for(i=0;i<l;i++) nonzero[i] = false; decision_function[] f = new decision_function[nr_class*(nr_class-1)/2]; double[] probA=null,probB=null; if (param.probability == 1) { probA=new double[nr_class*(nr_class-1)/2]; probB=new double[nr_class*(nr_class-1)/2]; } int p = 0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { svm_problem sub_prob = new svm_problem(); int si = start[i], sj = start[j]; int ci = count[i], cj = count[j]; sub_prob.l = ci+cj; sub_prob.x = new svm_node[sub_prob.l][]; sub_prob.y = new double[sub_prob.l]; int k; for(k=0;k<ci;k++) { sub_prob.x[k] = x[si+k]; sub_prob.y[k] = +1; } for(k=0;k<cj;k++) { sub_prob.x[ci+k] = x[sj+k]; sub_prob.y[ci+k] = -1; } if(param.probability == 1) { double[] probAB=new double[2]; svm_binary_svc_probability(sub_prob,param,weighted_C[i],weighted_C[j],probAB); probA[p]=probAB[0]; probB[p]=probAB[1]; } f[p] = svm_train_one(sub_prob,param,weighted_C[i],weighted_C[j]); for(k=0;k<ci;k++) if(!nonzero[si+k] && Math.abs(f[p].alpha[k]) > 0) nonzero[si+k] = true; for(k=0;k<cj;k++) if(!nonzero[sj+k] && Math.abs(f[p].alpha[ci+k]) > 0) nonzero[sj+k] = true; ++p; } // build output model.nr_class = nr_class; model.label = new int[nr_class]; for(i=0;i<nr_class;i++) model.label[i] = label[i]; model.rho = new double[nr_class*(nr_class-1)/2]; for(i=0;i<nr_class*(nr_class-1)/2;i++) model.rho[i] = f[i].rho; if(param.probability == 1) { model.probA = new double[nr_class*(nr_class-1)/2]; model.probB = new double[nr_class*(nr_class-1)/2]; for(i=0;i<nr_class*(nr_class-1)/2;i++) { model.probA[i] = probA[i]; model.probB[i] = probB[i]; } } else { model.probA=null; model.probB=null; } int nnz = 0; int[] nz_count = new int[nr_class]; model.nSV = new int[nr_class]; for(i=0;i<nr_class;i++) { int nSV = 0; for(int j=0;j<count[i];j++) if(nonzero[start[i]+j]) { ++nSV; ++nnz; } model.nSV[i] = nSV; nz_count[i] = nSV; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -