📄 svm.m4
字号:
double quad_coef=Q_i[i]+QD[j]-2*y[i]*Q_i[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/TAU; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } else { if (!is_upper_bound(j)) { double grad_diff= Gmax-G[j]; if (-G[j] >= Gmax2) Gmax2 = -G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef=Q_i[i]+QD[j]+2*y[i]*Q_i[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/TAU; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } } if(Gmax+Gmax2 < eps) return 1; working_set[0] = Gmax_idx; working_set[1] = Gmin_idx; return 0; } private boolean be_shrunken(int i, double Gmax1, double Gmax2) { if(is_upper_bound(i)) { if(y[i]==+1) return(-G[i] > Gmax1); else return(-G[i] > Gmax2); } else if(is_lower_bound(i)) { if(y[i]==+1) return(G[i] > Gmax2); else return(G[i] > Gmax1); } else return(false); } void do_shrinking() { int i; double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) } double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) } // find maximal violating pair first for(i=0;i<active_size;i++) { if(y[i]==+1) { if(!is_upper_bound(i)) { if(-G[i] >= Gmax1) Gmax1 = -G[i]; } if(!is_lower_bound(i)) { if(G[i] >= Gmax2) Gmax2 = G[i]; } } else { if(!is_upper_bound(i)) { if(-G[i] >= Gmax2) Gmax2 = -G[i]; } if(!is_lower_bound(i)) { if(G[i] >= Gmax1) Gmax1 = G[i]; } } } // shrink for(i=0;i<active_size;i++) if (be_shrunken(i, Gmax1, Gmax2)) { active_size--; while (active_size > i) { if (!be_shrunken(active_size, Gmax1, Gmax2)) { swap_index(i,active_size); break; } active_size--; } } // unshrink, check all variables again before final iterations if(unshrinked || Gmax1 + Gmax2 > eps*10) return; unshrinked = true; reconstruct_gradient(); for(i=l-1;i>=active_size;i--) if (!be_shrunken(i, Gmax1, Gmax2)) { while (active_size < i) { if (be_shrunken(active_size, Gmax1, Gmax2)) { swap_index(i,active_size); break; } active_size++; } active_size++; } } double calculate_rho() { double r; int nr_free = 0; double ub = INF, lb = -INF, sum_free = 0; for(int i=0;i<active_size;i++) { double yG = y[i]*G[i]; if(is_lower_bound(i)) { if(y[i] > 0) ub = Math.min(ub,yG); else lb = Math.max(lb,yG); } else if(is_upper_bound(i)) { if(y[i] < 0) ub = Math.min(ub,yG); else lb = Math.max(lb,yG); } else { ++nr_free; sum_free += yG; } } if(nr_free>0) r = sum_free/nr_free; else r = (ub+lb)/2; return r; }}//// Solver for nu-svm classification and regression//// additional constraint: e^T \alpha = constant//final class Solver_NU extends Solver{ private SolutionInfo si; void Solve(int l, QMatrix Q, double[] p, byte[] y, double[] alpha, double Cp, double Cn, double eps, SolutionInfo si, int shrinking) { this.si = si; super.Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking); } // return 1 if already optimal, return 0 otherwise int select_working_set(int[] working_set) { // return i,j such that y_i = y_j and // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) // j: minimizes the decrease of obj value // (if quadratic coefficeint <= 0, replace it with tau) // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) double Gmaxp = -INF; double Gmaxp2 = -INF; int Gmaxp_idx = -1; double Gmaxn = -INF; double Gmaxn2 = -INF; int Gmaxn_idx = -1; int Gmin_idx = -1; double obj_diff_min = INF; for(int t=0;t<active_size;t++) if(y[t]==+1) { if(!is_upper_bound(t)) if(-G[t] >= Gmaxp) { Gmaxp = -G[t]; Gmaxp_idx = t; } } else { if(!is_lower_bound(t)) if(G[t] >= Gmaxn) { Gmaxn = G[t]; Gmaxn_idx = t; } } int ip = Gmaxp_idx; int in = Gmaxn_idx; Qfloat[] Q_ip = null; Qfloat[] Q_in = null; if(ip != -1) // null Q_ip not accessed: Gmaxp=-INF if ip=-1 Q_ip = Q.get_Q(ip,active_size); if(in != -1) Q_in = Q.get_Q(in,active_size); for(int j=0;j<active_size;j++) { if(y[j]==+1) { if (!is_lower_bound(j)) { double grad_diff=Gmaxp+G[j]; if (G[j] >= Gmaxp2) Gmaxp2 = G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = Q_ip[ip]+QD[j]-2*Q_ip[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/TAU; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } else { if (!is_upper_bound(j)) { double grad_diff=Gmaxn-G[j]; if (-G[j] >= Gmaxn2) Gmaxn2 = -G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = Q_in[in]+QD[j]-2*Q_in[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/TAU; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } } if(Math.max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps) return 1; if(y[Gmin_idx] == +1) working_set[0] = Gmaxp_idx; else working_set[0] = Gmaxn_idx; working_set[1] = Gmin_idx; return 0; } private boolean be_shrunken(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4) { if(is_upper_bound(i)) { if(y[i]==+1) return(-G[i] > Gmax1); else return(-G[i] > Gmax4); } else if(is_lower_bound(i)) { if(y[i]==+1) return(G[i] > Gmax2); else return(G[i] > Gmax3); } else return(false); } void do_shrinking() { double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) } double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) } double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) } double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) } // find maximal violating pair first int i; for(i=0;i<active_size;i++) { if(!is_upper_bound(i)) { if(y[i]==+1) { if(-G[i] > Gmax1) Gmax1 = -G[i]; } else if(-G[i] > Gmax4) Gmax4 = -G[i]; } if(!is_lower_bound(i)) { if(y[i]==+1) { if(G[i] > Gmax2) Gmax2 = G[i]; } else if(G[i] > Gmax3) Gmax3 = G[i]; } } // shrinking for(i=0;i<active_size;i++) if (be_shrunken(i, Gmax1, Gmax2, Gmax3, Gmax4)) { active_size--; while (active_size > i) { if (!be_shrunken(active_size, Gmax1, Gmax2, Gmax3, Gmax4)) { swap_index(i,active_size); break; } active_size--; } } if(unshrinked || Math.max(Gmax1+Gmax2,Gmax3+Gmax4) > eps*10) return; unshrinked = true; reconstruct_gradient(); for(i=l-1;i>=active_size;i--) if (!be_shrunken(i, Gmax1, Gmax2, Gmax3, Gmax4)) { while (active_size < i) { if (be_shrunken(active_size, Gmax1, Gmax2, Gmax3, Gmax4)) { swap_index(i,active_size); break; } active_size++; } active_size++; } } double calculate_rho() { int nr_free1 = 0,nr_free2 = 0; double ub1 = INF, ub2 = INF; double lb1 = -INF, lb2 = -INF; double sum_free1 = 0, sum_free2 = 0; for(int i=0;i<active_size;i++) { if(y[i]==+1) { if(is_lower_bound(i)) ub1 = Math.min(ub1,G[i]); else if(is_upper_bound(i)) lb1 = Math.max(lb1,G[i]); else { ++nr_free1; sum_free1 += G[i]; } } else { if(is_lower_bound(i)) ub2 = Math.min(ub2,G[i]); else if(is_upper_bound(i)) lb2 = Math.max(lb2,G[i]); else { ++nr_free2; sum_free2 += G[i]; } } } double r1,r2; if(nr_free1 > 0) r1 = sum_free1/nr_free1; else r1 = (ub1+lb1)/2; if(nr_free2 > 0) r2 = sum_free2/nr_free2; else r2 = (ub2+lb2)/2; si.r = (r1+r2)/2; return (r1-r2)/2; }}//// Q matrices for various formulations//class SVC_Q extends Kernel{ private final byte[] y; private final Cache cache; private final Qfloat[] QD; SVC_Q(svm_problem prob, svm_parameter param, byte[] y_) { super(prob.l, prob.x, param); y = (byte[])y_.clone(); cache = new Cache(prob.l,(long)(param.cache_size*(1<<20))); QD = new Qfloat[prob.l]; for(int i=0;i<prob.l;i++) QD[i]= (Qfloat)kernel_function(i,i); } Qfloat[] get_Q(int i, int len) { Qfloat[][] data = new Qfloat[1][]; int start; if((start = cache.get_data(i,data,len)) < len) { for(int j=start;j<len;j++) data[0][j] = (Qfloat)(y[i]*y[j]*kernel_function(i,j)); } return data[0]; } Qfloat[] get_QD() { return QD; } void swap_index(int i, int j) { cache.swap_index(i,j); super.swap_index(i,j); swap(byte,y[i],y[j]); swap(Qfloat,QD[i],QD[j]); }}class ONE_CLASS_Q extends Kernel{ private final Cache cache; private final Qfloat[] QD; ONE_CLASS_Q(svm_problem prob, svm_parameter param) { super(prob.l, prob.x, param); cache = new Cache(prob.l,(long)(param.cache_size*(1<<20))); QD = new Qfloat[prob.l]; for(int i=0;i<prob.l;i++) QD[i]= (Qfloat)kernel_function(i,i); } Qfloat[] get_Q(int i, int len) { Qfloat[][] data = new Qfloat[1][]; int start; if((start = cache.get_data(i,data,len)) < len) { for(int j=start;j<len;j++) data[0][j] = (Qfloat)kernel_function(i,j); } return data[0]; } Qfloat[] get_QD() { return QD; } void swap_index(int i, int j) { cache.swap_index(i,j); super.swap_index(i,j); swap(Qfloat,QD[i],QD[j]); }}class SVR_Q extends Kernel{ private final int l; private final Cache cache; private final byte[] sign; private final int[] index; private int next_buffer; private Qfloat[][] buffer; private final Qfloat[] QD; SVR_Q(svm_problem prob, svm_parameter param) { super(prob.l, prob.x, param); l = prob.l; cache = new Cache(l,(long)(param.cache_size*(1<<20))); QD = new Qfloat[2*l]; sign = new byte[2*l]; index = new int[2*l]; for(int k=0;k<l;k++) { sign[k] = 1; sign[k+l] = -1; index[k] = k; index[k+l] = k; QD[k] = (Qfloat)kernel_function(k,k); QD[k+l] = QD[k]; } buffer = new Qfloat[2][2*l]; next_buffer = 0; } void swap_index(int i, int j) { swap(byte,sign[i],sign[j]); swap(int,index[i],index[j]); swap(Qfloat,QD[i],QD[j]); } Qfloat[] get_Q(int i, int len) { Qfloat[][] data = new Qfloat[1][]; int real_i = index[i]; if(cache.get_data(real_i,data,l) < l) { for(int j=0;j<l;j++) data[0][j] = (Qfloat)kernel_function(real_i,j); } // reorder and copy Qfloat buf[] = buffer[next_buffer]; next_buffer = 1 - next_buffer; byte si = sign[i]; for(int j=0;j<len;j++) buf[j] = si * sign[j] * data[0][index[j]]; return buf; } Qfloat[] get_QD() { return QD; }}public class svm { // // construct and solve various formulations // private static void solve_c_svc(svm_problem prob, svm_parameter param, double[] alpha, Solver.SolutionInfo si, double Cp, double Cn) { int l = prob.l; double[] minus_ones = new double[l]; byte[] y = new byte[l]; int i; for(i=0;i<l;i++) { alpha[i] = 0; minus_ones[i] = -1; if(prob.y[i] > 0) y[i] = +1; else y[i]=-1; } Solver s = new Solver(); s.Solve(l, new SVC_Q(prob,param,y), minus_ones, y, alpha, Cp, Cn, param.eps, si, param.shrinking); double sum_alpha=0; for(i=0;i<l;i++) sum_alpha += alpha[i]; if (Cp==Cn) System.out.print("nu = "+sum_alpha/(Cp*prob.l)+"\n"); for(i=0;i<l;i++) alpha[i] *= y[i]; } private static void solve_nu_svc(svm_problem prob, svm_parameter param, double[] alpha, Solver.SolutionInfo si) { int i; int l = prob.l; double nu = param.nu; byte[] y = new byte[l]; for(i=0;i<l;i++) if(prob.y[i]>0) y[i] = +1; else y[i] = -1; double sum_pos = nu*l/2; double sum_neg = nu*l/2; for(i=0;i<l;i++) if(y[i] == +1) { alpha[i] = Math.min(1.0,sum_pos); sum_pos -= alpha[i]; } else { alpha[i] = Math.min(1.0,sum_neg); sum_neg -= alpha[i]; } double[] zeros = new double[l]; for(i=0;i<l;i++) zeros[i] = 0; Solver_NU s = new Solver_NU(); s.Solve(l, new SVC_Q(prob,param,y), zeros, y, alpha, 1.0, 1.0, param.eps, si, param.shrinking); double r = si.r; System.out.print("C = "+1/r+"\n"); for(i=0;i<l;i++) alpha[i] *= y[i]/r; si.rho /= r; si.obj /= (r*r); si.upper_bound_p = 1/r; si.upper_bound_n = 1/r; } private static void solve_one_class(svm_problem prob, svm_parameter param, double[] alpha, Solver.SolutionInfo si) { int l = prob.l; double[] zeros = new double[l]; byte[] ones = new byte[l];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -