📄 svm.java
字号:
// Method 2 from the multiclass_prob paper by Wu, Lin, and Weng private static void multiclass_probability(int k, double[][] r, double[] p) { int t,j; int iter = 0, max_iter=Math.max(100,k); double[][] Q=new double[k][k]; double[] Qp= new double[k]; double pQp, eps=0.005/k; for (t=0;t<k;t++) { p[t]=1.0/k; // Valid if k = 1 Q[t][t]=0; for (j=0;j<t;j++) { Q[t][t]+=r[j][t]*r[j][t]; Q[t][j]=Q[j][t]; } for (j=t+1;j<k;j++) { Q[t][t]+=r[j][t]*r[j][t]; Q[t][j]=-r[j][t]*r[t][j]; } } for (iter=0;iter<max_iter;iter++) { // stopping condition, recalculate QP,pQP for numerical accuracy pQp=0; for (t=0;t<k;t++) { Qp[t]=0; for (j=0;j<k;j++) Qp[t]+=Q[t][j]*p[j]; pQp+=p[t]*Qp[t]; } double max_error=0; for (t=0;t<k;t++) { double error=Math.abs(Qp[t]-pQp); if (error>max_error) max_error=error; } if (max_error<eps) break; for (t=0;t<k;t++) { double diff=(-Qp[t]+pQp)/Q[t][t]; p[t]+=diff; pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff); for (j=0;j<k;j++) { Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff); p[j]/=(1+diff); } } } if (iter>=max_iter) System.err.print("Exceeds max_iter in multiclass_prob\n"); } // Cross-validation decision values for probability estimates private static void svm_binary_svc_probability(svm_problem prob, svm_parameter param, double Cp, double Cn, double[] probAB) { int i; int nr_fold = 5; int[] perm = new int[prob.l]; double[] dec_values = new double[prob.l]; // random shuffle for(i=0;i<prob.l;i++) perm[i]=i; for(i=0;i<prob.l;i++) { int j = i+(int)(Math.random()*(prob.l-i)); do {int _=perm[i]; perm[i]=perm[j]; perm[j]=_;} while(false); } for(i=0;i<nr_fold;i++) { int begin = i*prob.l/nr_fold; int end = (i+1)*prob.l/nr_fold; int j,k; svm_problem subprob = new svm_problem(); subprob.l = prob.l-(end-begin); subprob.x = new svm_node[subprob.l][]; subprob.y = new double[subprob.l]; k=0; for(j=0;j<begin;j++) { subprob.x[k] = prob.x[perm[j]]; subprob.y[k] = prob.y[perm[j]]; ++k; } for(j=end;j<prob.l;j++) { subprob.x[k] = prob.x[perm[j]]; subprob.y[k] = prob.y[perm[j]]; ++k; } int p_count=0,n_count=0; for(j=0;j<k;j++) if(subprob.y[j]>0) p_count++; else n_count++; if(p_count==0 && n_count==0) for(j=begin;j<end;j++) dec_values[perm[j]] = 0; else if(p_count > 0 && n_count == 0) for(j=begin;j<end;j++) dec_values[perm[j]] = 1; else if(p_count == 0 && n_count > 0) for(j=begin;j<end;j++) dec_values[perm[j]] = -1; else { svm_parameter subparam = (svm_parameter)param.clone(); subparam.probability=0; subparam.C=1.0; subparam.nr_weight=2; subparam.weight_label = new int[2]; subparam.weight = new double[2]; subparam.weight_label[0]=+1; subparam.weight_label[1]=-1; subparam.weight[0]=Cp; subparam.weight[1]=Cn; svm_model submodel = svm_train(subprob,subparam); for(j=begin;j<end;j++) { double[] dec_value=new double[1]; svm_predict_values(submodel,prob.x[perm[j]],dec_value); dec_values[perm[j]]=dec_value[0]; // ensure +1 -1 order; reason not using CV subroutine dec_values[perm[j]] *= submodel.label[0]; } } } sigmoid_train(prob.l,dec_values,prob.y,probAB); } // Return parameter of a Laplace distribution private static double svm_svr_probability(svm_problem prob, svm_parameter param) { int i; int nr_fold = 5; double[] ymv = new double[prob.l]; double mae = 0; svm_parameter newparam = (svm_parameter)param.clone(); newparam.probability = 0; svm_cross_validation(prob,newparam,nr_fold,ymv); for(i=0;i<prob.l;i++) { ymv[i]=prob.y[i]-ymv[i]; mae += Math.abs(ymv[i]); } mae /= prob.l; double std=Math.sqrt(2*mae*mae); int count=0; mae=0; for(i=0;i<prob.l;i++) if (Math.abs(ymv[i]) > 5*std) count=count+1; else mae+=Math.abs(ymv[i]); mae /= (prob.l-count); System.err.print("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma="+mae+"\n"); return mae; } // label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data // perm, length l, must be allocated before calling this subroutine private static void svm_group_classes(svm_problem prob, int[] nr_class_ret, int[][] label_ret, int[][] start_ret, int[][] count_ret, int[] perm) { int l = prob.l; int max_nr_class = 16; int nr_class = 0; int[] label = new int[max_nr_class]; int[] count = new int[max_nr_class]; int[] data_label = new int[l]; int i; for(i=0;i<l;i++) { int this_label = (int)(prob.y[i]); int j; for(j=0;j<nr_class;j++) { if(this_label == label[j]) { ++count[j]; break; } } data_label[i] = j; if(j == nr_class) { if(nr_class == max_nr_class) { max_nr_class *= 2; int[] new_data = new int[max_nr_class]; System.arraycopy(label,0,new_data,0,label.length); label = new_data; new_data = new int[max_nr_class]; System.arraycopy(count,0,new_data,0,count.length); count = new_data; } label[nr_class] = this_label; count[nr_class] = 1; ++nr_class; } } int[] start = new int[nr_class]; start[0] = 0; for(i=1;i<nr_class;i++) start[i] = start[i-1]+count[i-1]; for(i=0;i<l;i++) { perm[start[data_label[i]]] = i; ++start[data_label[i]]; } start[0] = 0; for(i=1;i<nr_class;i++) start[i] = start[i-1]+count[i-1]; nr_class_ret[0] = nr_class; label_ret[0] = label; start_ret[0] = start; count_ret[0] = count; } // // Interface functions // public static svm_model svm_train(svm_problem prob, svm_parameter param) { svm_model model = new svm_model(); model.param = param; if(param.svm_type == svm_parameter.ONE_CLASS || param.svm_type == svm_parameter.EPSILON_SVR || param.svm_type == svm_parameter.NU_SVR) { // regression or one-class-svm model.nr_class = 2; model.label = null; model.nSV = null; model.probA = null; model.probB = null; model.sv_coef = new double[1][]; if(param.probability == 1 && (param.svm_type == svm_parameter.EPSILON_SVR || param.svm_type == svm_parameter.NU_SVR)) { model.probA = new double[1]; model.probA[0] = svm_svr_probability(prob,param); } decision_function f = svm_train_one(prob,param,0,0); model.rho = new double[1]; model.rho[0] = f.rho; int nSV = 0; int i; for(i=0;i<prob.l;i++) if(Math.abs(f.alpha[i]) > 0) ++nSV; model.l = nSV; model.SV = new svm_node[nSV][]; model.sv_coef[0] = new double[nSV]; int j = 0; for(i=0;i<prob.l;i++) if(Math.abs(f.alpha[i]) > 0) { model.SV[j] = prob.x[i]; model.sv_coef[0][j] = f.alpha[i]; ++j; } } else { // classification int l = prob.l; int[] tmp_nr_class = new int[1]; int[][] tmp_label = new int[1][]; int[][] tmp_start = new int[1][]; int[][] tmp_count = new int[1][]; int[] perm = new int[l]; // group training data of the same class svm_group_classes(prob,tmp_nr_class,tmp_label,tmp_start,tmp_count,perm); int nr_class = tmp_nr_class[0]; int[] label = tmp_label[0]; int[] start = tmp_start[0]; int[] count = tmp_count[0]; svm_node[][] x = new svm_node[l][]; int i; for(i=0;i<l;i++) x[i] = prob.x[perm[i]]; // calculate weighted C double[] weighted_C = new double[nr_class]; for(i=0;i<nr_class;i++) weighted_C[i] = param.C; for(i=0;i<param.nr_weight;i++) { int j; for(j=0;j<nr_class;j++) if(param.weight_label[i] == label[j]) break; if(j == nr_class) System.err.print("warning: class label "+param.weight_label[i]+" specified in weight is not found\n"); else weighted_C[j] *= param.weight[i]; } // train k*(k-1)/2 models boolean[] nonzero = new boolean[l]; for(i=0;i<l;i++) nonzero[i] = false; decision_function[] f = new decision_function[nr_class*(nr_class-1)/2]; double[] probA=null,probB=null; if (param.probability == 1) { probA=new double[nr_class*(nr_class-1)/2]; probB=new double[nr_class*(nr_class-1)/2]; } int p = 0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { svm_problem sub_prob = new svm_problem(); int si = start[i], sj = start[j]; int ci = count[i], cj = count[j]; sub_prob.l = ci+cj; sub_prob.x = new svm_node[sub_prob.l][]; sub_prob.y = new double[sub_prob.l]; int k; for(k=0;k<ci;k++) { sub_prob.x[k] = x[si+k]; sub_prob.y[k] = +1; } for(k=0;k<cj;k++) { sub_prob.x[ci+k] = x[sj+k]; sub_prob.y[ci+k] = -1; } if(param.probability == 1) { double[] probAB=new double[2]; svm_binary_svc_probability(sub_prob,param,weighted_C[i],weighted_C[j],probAB); probA[p]=probAB[0]; probB[p]=probAB[1]; } f[p] = svm_train_one(sub_prob,param,weighted_C[i],weighted_C[j]); for(k=0;k<ci;k++) if(!nonzero[si+k] && Math.abs(f[p].alpha[k]) > 0) nonzero[si+k] = true; for(k=0;k<cj;k++) if(!nonzero[sj+k] && Math.abs(f[p].alpha[ci+k]) > 0) nonzero[sj+k] = true; ++p; } // build output model.nr_class = nr_class; model.label = new int[nr_class]; for(i=0;i<nr_class;i++) model.label[i] = label[i]; model.rho = new double[nr_class*(nr_class-1)/2]; for(i=0;i<nr_class*(nr_class-1)/2;i++) model.rho[i] = f[i].rho; if(param.probability == 1) { model.probA = new double[nr_class*(nr_class-1)/2]; model.probB = new double[nr_class*(nr_class-1)/2]; for(i=0;i<nr_class*(nr_class-1)/2;i++) { model.probA[i] = probA[i]; model.probB[i] = probB[i]; } } else { model.probA=null; model.probB=null; } int nnz = 0; int[] nz_count = new int[nr_class]; model.nSV = new int[nr_class]; for(i=0;i<nr_class;i++) { int nSV = 0; for(int j=0;j<count[i];j++) if(nonzero[start[i]+j]) { ++nSV; ++nnz; } model.nSV[i] = nSV; nz_count[i] = nSV; } System.out.print("Total nSV = "+nnz+"\n"); model.l = nnz; model.SV = new svm_node[nnz][]; p = 0; for(i=0;i<l;i++) if(nonzero[i]) model.SV[p++] = x[i]; int[] nz_start = new int[nr_class]; nz_start[0] = 0; for(i=1;i<nr_class;i++) nz_start[i] = nz_start[i-1]+nz_count[i-1]; model.sv_coef = new double[nr_class-1][]; for(i=0;i<nr_class-1;i++) model.sv_coef[i] = new double[nnz]; p = 0; for(i=0;i<nr_class;i++) for(int j=i+1;j<nr_class;j++) { // classifier (i,j): coefficients with // i are in sv_coef[j-1][nz_start[i]...], // j are in sv_coef[i][nz_start[j]...] int si = start[i]; int sj = start[j]; int ci = count[i]; int cj = count[j]; int q = nz_start[i]; int k; for(k=0;k<ci;k++) if(nonzero[si+k]) model.sv_coef[j-1][q++] = f[p].alpha[k]; q = nz_start[j]; for(k=0;k<cj;k++) if(nonzero[sj+k]) model.sv_coef[i][q++] = f[p].alpha[ci+k]; ++p; } } return model; } // Stratified cross validation public static void svm_cross_validation(svm_problem prob, svm_parameter param, int nr_fold, double[] target) { int i; int[] fold_start = new int[nr_fold+1]; int l = prob.l; int[] perm = new int[l]; // stratified cv may not give leave-one-out rate // Each class to l folds -> some folds may have zero elements if((param.svm_type == svm_parameter.C_SVC || param.svm_type == svm_parameter.NU_SVC) && nr_fold < l) { int[] tmp_nr_class = new int[1]; int[][] tmp_label = new int[1][]; int[][] tmp_start = new int[1][]; int[][] tmp_count = new int[1][]; svm_group_classes(prob,tmp_nr_class,tmp_label,tmp_start,tmp_count,perm); int nr_class = tmp_nr_class[0]; int[] label = tmp_label[0]; int[] start = tmp_start[0]; int[] count = tmp_count[0]; // random shuffle and then data grouped by fold using the array perm int[] fold_count = new int[nr_fold]; int c; int[] index = new int[l]; for(i=0;i<l;i++) index[i]=perm[i]; for (c=0; c<nr_class; c++) for(i=0;i<count[c];i++) { int j = i+(int)(Math.random()*(count[c]-i)); do {int _=index[start[c]+j]; index[start[c]+j]=index[start[c]+i]; index[start[c]+i]=_;} while(false); } for(i=0;i<nr_fold;i++) { fold_count[i] = 0; for (c=0; c<nr_class;c++) fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold; } fold_start[0]=0; for (i=1;i<=nr_fold;i++) fold_start[i] = fold_start[i-1]+fold_count[i-1]; for (c=0; c<nr_class;c++) for(i=0;i<nr_fold;i++) { int begin = start[c]+i*count[c]/nr_fold; int end = start[c]+(i+1)*count[c]/nr_fold; for(int j=begin;j<end;j++) { perm[fold_start[i]] = index[j]; fold_start[i]++; } } fold_start[0]=0; for (i=1;i<=nr_fold;i++) fold_start[i] = fold_start[i-1]+fold_count[i-1]; } else { for(i=0;i<l;i++) perm[i]=i; for(i=0;i<l;i++) { int j = i+(int)(Math.random()*(l-i)); do {int _=perm[i]; perm[i]=perm[j]; perm[j]=_;} while(false); } for(i=0;i<=nr_fold;i++) fold_start[i]=i*l/nr_fold; } for(i=0;i<nr_fold;i++) { int begin = fold_start[i]; int end = fold_start[i+1]; int j,k; svm_problem subprob = new svm_problem(); subprob.l = l-(end-begin); subprob.x = new svm_node[subprob.l][]; subprob.y = new double[subprob.l]; k=0; for(j=0;j<begin;j++) { subprob.x[k] = prob.x[perm[j]]; subprob.y[k] = prob.y[perm[j]]; ++k; } for(j=end;j<l;j++)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -