📄 svm.java
字号:
if(sum > C_j) { if(alpha[j] > C_j) { alpha[j] = C_j; alpha[i] = sum - C_j; } } else { if(alpha[i] < 0) { alpha[i] = 0; alpha[j] = sum; } } } // update G double delta_alpha_i = alpha[i] - old_alpha_i; double delta_alpha_j = alpha[j] - old_alpha_j; for(int k=0;k<active_size;k++) { G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j; } // update alpha_status and G_bar { boolean ui = is_upper_bound(i); boolean uj = is_upper_bound(j); update_alpha_status(i); update_alpha_status(j); int k; if(ui != is_upper_bound(i)) { Q_i = Q.get_Q(i,l); if(ui) for(k=0;k<l;k++) G_bar[k] -= C_i * Q_i[k]; else for(k=0;k<l;k++) G_bar[k] += C_i * Q_i[k]; } if(uj != is_upper_bound(j)) { Q_j = Q.get_Q(j,l); if(uj) for(k=0;k<l;k++) G_bar[k] -= C_j * Q_j[k]; else for(k=0;k<l;k++) G_bar[k] += C_j * Q_j[k]; } } } // calculate rho si.rho = calculate_rho(); // calculate objective value { double v = 0; int i; for(i=0;i<l;i++) v += alpha[i] * (G[i] + p[i]); si.obj = v/2; } // put back the solution { for(int i=0;i<l;i++) alpha_[active_set[i]] = alpha[i]; } si.upper_bound_p = Cp; si.upper_bound_n = Cn; System.out.print("\noptimization finished, #iter = "+iter+"\n"); } // return 1 if already optimal, return 0 otherwise int select_working_set(int[] working_set) { // return i,j such that // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) // j: mimimizes the decrease of obj value // (if quadratic coefficeint <= 0, replace it with tau) // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) double Gmax = -INF; double Gmax2 = -INF; int Gmax_idx = -1; int Gmin_idx = -1; double obj_diff_min = INF; for(int t=0;t<active_size;t++) if(y[t]==+1) { if(!is_upper_bound(t)) if(-G[t] >= Gmax) { Gmax = -G[t]; Gmax_idx = t; } } else { if(!is_lower_bound(t)) if(G[t] >= Gmax) { Gmax = G[t]; Gmax_idx = t; } } int i = Gmax_idx; float[] Q_i = null; if(i != -1) // null Q_i not accessed: Gmax=-INF if i=-1 Q_i = Q.get_Q(i,active_size); for(int j=0;j<active_size;j++) { if(y[j]==+1) { if (!is_lower_bound(j)) { double grad_diff=Gmax+G[j]; if (G[j] >= Gmax2) Gmax2 = G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef=Q_i[i]+QD[j]-2*y[i]*Q_i[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/1e-12; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } else { if (!is_upper_bound(j)) { double grad_diff= Gmax-G[j]; if (-G[j] >= Gmax2) Gmax2 = -G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef=Q_i[i]+QD[j]+2*y[i]*Q_i[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/1e-12; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } } if(Gmax+Gmax2 < eps) return 1; working_set[0] = Gmax_idx; working_set[1] = Gmin_idx; return 0; } private boolean be_shrunken(int i, double Gmax1, double Gmax2) { if(is_upper_bound(i)) { if(y[i]==+1) return(-G[i] > Gmax1); else return(-G[i] > Gmax2); } else if(is_lower_bound(i)) { if(y[i]==+1) return(G[i] > Gmax2); else return(G[i] > Gmax1); } else return(false); } void do_shrinking() { int i; double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) } double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) } // find maximal violating pair first for(i=0;i<active_size;i++) { if(y[i]==+1) { if(!is_upper_bound(i)) { if(-G[i] >= Gmax1) Gmax1 = -G[i]; } if(!is_lower_bound(i)) { if(G[i] >= Gmax2) Gmax2 = G[i]; } } else { if(!is_upper_bound(i)) { if(-G[i] >= Gmax2) Gmax2 = -G[i]; } if(!is_lower_bound(i)) { if(G[i] >= Gmax1) Gmax1 = G[i]; } } } // shrink for(i=0;i<active_size;i++) if (be_shrunken(i, Gmax1, Gmax2)) { active_size--; while (active_size > i) { if (!be_shrunken(active_size, Gmax1, Gmax2)) { swap_index(i,active_size); break; } active_size--; } } // unshrink, check all variables again before final iterations if(unshrinked || Gmax1 + Gmax2 > eps*10) return; unshrinked = true; reconstruct_gradient(); for(i=l-1;i>=active_size;i--) if (!be_shrunken(i, Gmax1, Gmax2)) { while (active_size < i) { if (be_shrunken(active_size, Gmax1, Gmax2)) { swap_index(i,active_size); break; } active_size++; } active_size++; } } double calculate_rho() { double r; int nr_free = 0; double ub = INF, lb = -INF, sum_free = 0; for(int i=0;i<active_size;i++) { double yG = y[i]*G[i]; if(is_lower_bound(i)) { if(y[i] > 0) ub = Math.min(ub,yG); else lb = Math.max(lb,yG); } else if(is_upper_bound(i)) { if(y[i] < 0) ub = Math.min(ub,yG); else lb = Math.max(lb,yG); } else { ++nr_free; sum_free += yG; } } if(nr_free>0) r = sum_free/nr_free; else r = (ub+lb)/2; return r; }}//// Solver for nu-svm classification and regression//// additional constraint: e^T \alpha = constant//final class Solver_NU extends Solver{ private SolutionInfo si; void Solve(int l, QMatrix Q, double[] p, byte[] y, double[] alpha, double Cp, double Cn, double eps, SolutionInfo si, int shrinking) { this.si = si; super.Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking); } // return 1 if already optimal, return 0 otherwise int select_working_set(int[] working_set) { // return i,j such that y_i = y_j and // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) // j: minimizes the decrease of obj value // (if quadratic coefficeint <= 0, replace it with tau) // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) double Gmaxp = -INF; double Gmaxp2 = -INF; int Gmaxp_idx = -1; double Gmaxn = -INF; double Gmaxn2 = -INF; int Gmaxn_idx = -1; int Gmin_idx = -1; double obj_diff_min = INF; for(int t=0;t<active_size;t++) if(y[t]==+1) { if(!is_upper_bound(t)) if(-G[t] >= Gmaxp) { Gmaxp = -G[t]; Gmaxp_idx = t; } } else { if(!is_lower_bound(t)) if(G[t] >= Gmaxn) { Gmaxn = G[t]; Gmaxn_idx = t; } } int ip = Gmaxp_idx; int in = Gmaxn_idx; float[] Q_ip = null; float[] Q_in = null; if(ip != -1) // null Q_ip not accessed: Gmaxp=-INF if ip=-1 Q_ip = Q.get_Q(ip,active_size); if(in != -1) Q_in = Q.get_Q(in,active_size); for(int j=0;j<active_size;j++) { if(y[j]==+1) { if (!is_lower_bound(j)) { double grad_diff=Gmaxp+G[j]; if (G[j] >= Gmaxp2) Gmaxp2 = G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = Q_ip[ip]+QD[j]-2*Q_ip[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/1e-12; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } else { if (!is_upper_bound(j)) { double grad_diff=Gmaxn-G[j]; if (-G[j] >= Gmaxn2) Gmaxn2 = -G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = Q_in[in]+QD[j]-2*Q_in[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/1e-12; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } } if(Math.max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps) return 1; if(y[Gmin_idx] == +1) working_set[0] = Gmaxp_idx; else working_set[0] = Gmaxn_idx; working_set[1] = Gmin_idx; return 0; } private boolean be_shrunken(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4) { if(is_upper_bound(i)) { if(y[i]==+1) return(-G[i] > Gmax1); else return(-G[i] > Gmax4); } else if(is_lower_bound(i)) { if(y[i]==+1) return(G[i] > Gmax2); else return(G[i] > Gmax3); } else return(false); } void do_shrinking() { double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) } double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) } double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) } double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) } // find maximal violating pair first int i; for(i=0;i<active_size;i++) { if(!is_upper_bound(i)) { if(y[i]==+1) { if(-G[i] > Gmax1) Gmax1 = -G[i]; } else if(-G[i] > Gmax4) Gmax4 = -G[i]; } if(!is_lower_bound(i)) { if(y[i]==+1) { if(G[i] > Gmax2) Gmax2 = G[i]; } else if(G[i] > Gmax3) Gmax3 = G[i]; } } // shrinking for(i=0;i<active_size;i++) if (be_shrunken(i, Gmax1, Gmax2, Gmax3, Gmax4)) { active_size--; while (active_size > i) { if (!be_shrunken(active_size, Gmax1, Gmax2, Gmax3, Gmax4)) { swap_index(i,active_size); break; } active_size--; } } if(unshrinked || Math.max(Gmax1+Gmax2,Gmax3+Gmax4) > eps*10) return; unshrinked = true; reconstruct_gradient(); for(i=l-1;i>=active_size;i--) if (!be_shrunken(i, Gmax1, Gmax2, Gmax3, Gmax4)) { while (active_size < i) { if (be_shrunken(active_size, Gmax1, Gmax2, Gmax3, Gmax4)) { swap_index(i,active_size); break; } active_size++; } active_size++; } } double calculate_rho() { int nr_free1 = 0,nr_free2 = 0; double ub1 = INF, ub2 = INF; double lb1 = -INF, lb2 = -INF; double sum_free1 = 0, sum_free2 = 0; for(int i=0;i<active_size;i++) { if(y[i]==+1) { if(is_lower_bound(i)) ub1 = Math.min(ub1,G[i]);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -