⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svmcv.m

📁 LibSVM工具箱
💻 M
字号:
function [net, CVErr, paramSeq] = svmcv(net, X, Y, range, step, nfold, Xv, Yv, dodisplay)% SVMCV - Kernel parameter selection for SVM via cross validation% %   NET = SVMCV(NET, X, Y, RANGE)%   Given an initialised Support Vector Machine structure NET, the best%   setting of the kernel parameters is computed via 10fold cross%   validation. CV is done on the data points X (one point per row) with%   target values Y (+1 or -1). The kernel parameters that are tested lie%   between MIN(RANGE) and MAX(RANGE), starting with MIN(RANGE) for 'rbf'%   kernels and MAX(RANGE) for all other kernel functions.%   RANGE may also be a vector of length >2, in this case RANGE is taken%   as the explicit sequence of kernel parameters that are tested.%   SVMCV only works for kernel functions that require one parameter.%%   [NET, CVERR, PARAMSEQ] = SVMCV(NET, X, Y, RANGE, STEP, NFOLD)%   The sequence of test parameters is generated by Param(t+1) =%   Param(t)*STEP for 'rbf' kernels, and  Param(t+1) = Param(t)+STEP for%   all other kernels. Default value: SQRT(2) for 'rbf', -1 otherwise.%   Determine the parameters based on NFOLD cross validation.%   If STEP==[], RANGE is again interpreted as the explict sequence of%   kernel parameters.%%   The tested parameter sequence is returned in PARAMSEQ. For each entry%   PARAMSEQ(i), there is one line CVERR(i,:) that describes the%   estimated test set error. CVERR(i,1) is the mean,  CVERR(i,2) is the%   variance of the test set error over all NFOLD runs.%%   [NET, CVERR, PARAMSEQ] = SVMCV(NET, X, Y, RANGE, STEP, 1, XV, YV)%   does parameter selection based on one fixed validation set XV and%   YV. CVERR(i,2)==0 for all tested parameter settings.%   NET = SVMCV(NET, X, Y, RANGE, STEP, 1, XV, YV, DODISPLAY) displays%   error information for all tested parameters. DODISPLAY==0 shows%   nothing, DODISPLAY==1 shows a final CV summary (default),%   DODISPLAY==2 also shows the test set error for each trained SVM,%   DODISPLAY==3 includes the output produced by SVMTRAIN.%%   See also%   SVM, SVMTRAIN%   % % Copyright (c) by Anton Schwaighofer (2001)% $Revision: 1.6 $ $Date: 2001/06/05 19:20:00 $% mailto:anton.schwaighofer@gmx.net% % This program is released unter the GNU General Public License.% % Check arguments for consistencyerrstring = consist(net, 'svm', X, Y);if ~isempty(errstring);  error(errstring);endif nargin<9,  dodisplay = 1;endif nargin<8,  Xv = [];endif nargin<7,  Yv = [];endif nargin<6,  nfold = 10;endif (~isempty(Xv)) & (~isempty(Yv)),  errstring = consist(net, 'svm', Xv, Yv);  if ~isempty(errstring);    error(errstring);  end  if (nfold~=1),    error('Input parameters XV and YV may only be used with NFOLD==1');  endendif nargin<5,  step = 0;endrange = range(:)';N = size(X, 1);if N<nfold,  error('At least NFOLD (default 10) training examples must be given');endif (length(range)>2) | isempty(step),  % If range parameter has more than only min/max entries: Use this as  % the sequence of parameters to test  paramSeq = range;else  paramSeq = [];  switch net.kernel    case 'rbf'      if step==0,        step = sqrt(2);      end    % Multiplicative update, step size < 1 : start with max value    if abs(step)<1,      param = max(range);      while (param>=min(range)),        paramSeq = [paramSeq param];        param = param*abs(step);      end    else      % Multiplicative update, step size > 1 : start with min value      param = min(range);      while (param<=max(range)),        paramSeq = [paramSeq param];        param = param*abs(step);      end    end    otherwise      % Additive update for kernels other than 'rbf'      if step==0,        step = -1;      end      if step<0,        paramSeq = max(range):step:min(range);      else        paramSeq = min(range):step:max(range);      end  endend  % Storing all validation set errors for each parameter choiceallErr = zeros(nfold, length(paramSeq));% Storing the confusion matrices for each parameter choicecm = cell(1, length(paramSeq));for j = 1:length(paramSeq),  cm{j} = zeros(2);end% shuffle X and Y in the same wayperm = randperm(N);X = X(perm,:);Y = Y(perm,:);% size of one test setchsize = floor (N/nfold);% the training set is not exactly the whole data minus the one test set,% but it is the union of the other test sets. So only effsize examples% of the data set will ever be usedeffsize = nfold*chsize;% check if leave-one-out CV (or almost such) is requiredusePrev = (nfold>=(N/2));prevInd = [];for i = 1:nfold,  % currentX/Y is the current training set  if (nfold == 1),    currentX = X;    currentY = Y;    testX = Xv;    testY = Yv;  else    % start and end index of current test set    ind1 = 1+(i-1)*chsize;    ind2 = i*chsize;    currentInd = [1:(ind1-1), (ind2+1):effsize];    currentX = X(currentInd, :);    currentY = Y(currentInd, :);    testX = X(ind1:ind2,:);    testY = Y(ind1:ind2,:);  end;  % We start out with the most powerful kernel (smallest sigma for RBF  % kernel, highest degree for polynomial). We assume that all training  % examples will be support vectors due to overfitting, thus we start  % the optimization with a value of C/2 for each example.  if length(net.c(:))==1,    alpha0 = repmat(net.c, [length(currentY) 1]);    % The same upper bound for all examples  elseif length(net.c(:))==2,    alpha0 = zeros([length(currentY) 1]);    alpha0(currentY>0) = net.c(1);    alpha0(currentY<=0) = net.c(2);    % Different upper bounds C for the positive and negative examples  else    net2.c = net.c(perm);    alpha0 = net2.c(currentInd);    % Use different C for each example: permute the original C's  end  alpha0 = alpha0/2;  % Start out with alpha = C/2 for the optimization routine.  % another little trick for leave-one-out CV: training sets will only  % slightly differ, thus use the alphas from the previous iteration,  % even if it resulted from a different parameter setting, as initial  % values alpha0  if usePrev & ~isempty(prevInd),    a = zeros(N, 1);    a(currentInd) = alpha0;    a(prevInd) = prevAlpha;    alpha0 = a(currentInd);  end    % Now loop over all parameter settings and train the SVM on currentX/Y  net2 = net;  if (dodisplay>0),    fprintf('Split %i of the training data:\n', i);  end  for j = 1:length(paramSeq),    param = paramSeq(j);    net2.kernelpar = param;    % Plug the current parameter settings into the SVM and train on the    % current training set    net2 = svmtrain(net2, currentX, currentY, alpha0, max(0,dodisplay-2));    % Evaluate on the non-training data    testPred = svmfwd(net2, testX);    allErr(i, j) = mean(testY ~= testPred);    % Compute the confusion matrix    for k = [1 2],      for l = [1 2],        c(k,l) = sum(((testPred>=0)==(l-1)).*((testY>=0)==(k-1)));      end    end    cm{j} = cm{j}+c;    % take out the computed coefficients alpha and use them as starting    % values for the next iteration (next parameter choice)    alpha0 = net2.alpha;    if (dodisplay>1),      fprintf('Split %i with parameter %g:\n', i, param);      fprintf('  Test set error = %2.3f%%\n', allErr(i, j)*100);      [fracSV, normW] = svmstat(net2, (dodisplay>2));      fprintf('  Norm of the separating hyperplane: %g\n', normW);      fprintf('  Fraction of support vectors: %2.3f%%\n', fracSV*100);    end  end  if usePrev,    prevAlpha = net2.alpha;    prevInd = currentInd;  endend% Compute mean and standard deviation over all nfold runsmeanErr = mean(allErr, 1);stdErr = std(allErr, 0, 1);CVErr = [meanErr; stdErr]';% Find the point of minimum mean error and plug that parameter into the% output SVM structure. If there should be several points of minimal% error, select the one with minimal standard deviation[sortedMean, sortedInd] = sort(meanErr);minima = find(sortedMean(1)==meanErr);[dummy, sortedInd2] = sort(stdErr(minima));net.kernelpar = paramSeq(minima(sortedInd2(1)));if (dodisplay>0),  for j = 1:length(paramSeq),    fprintf('kernelpar=%g: Avg CV error %2.3f%% with stddev %1.4f\n', ...            paramSeq(j), meanErr(j)*100, stdErr(j)*100);    if any(cm{j}~=0),      fprintf('  Confusion matrix, averaged over all runs:\n');      fprintf('                  Predicted class:\n');      fprintf('               %5i         %5i\n', -1, +1);      c1 = cm{j}';      c2 = 100*c1./repmat(sum(c1), [2 1]);      c3 = [c1(:) c2(:)]';      fprintf(['  True -1: %5i (%3.2f%%)  %5i (%3.2f%%)\n  True +1: %5i' ...               ' (%3.2f%%)  %5i (%3.2f%%)\n'], c3(:));    end  endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -