📄 demsvm2.m
字号:
function demsvm2()% DEMSVM2 - Demonstrate advanced Support Vector Machine features% % DEMSVM2 demonstrates the classification of a simple artificial data% set by a Support Vector Machine classifier. The features of the SVM% routines that make it useful for large data sets are shown.%% See also% SVM, SVMTRAIN, SVMFWD, SVMKERNEL, DEMSVM2%% % Copyright (c) Anton Schwaighofer (2001)% $Revision: 1.4 $ $Date: 2001/04/19 23:29:48 $% mailto:anton.schwaighofer@gmx.net% % This program is released unter the GNU General Public License.% rand('seed', 1);randn('seed', 1);X = [2 7; 3 6; 2 2; 8 1; 6 4; 4 8; 9 5; 9 9; 9 4; 6 9; 7 4; 4 4];Y = [ +1; +1; +1; +1; +1; -1; -1; -1; -1; -1; -1; -1];% define a simple artificial data setx1ran = [0 10];x2ran = [0 10];% range for plotting the data set and the decision boundarydisp(' ');disp('This demonstration illustrates the use of a Support Vector Machine');disp('(SVM) for classification.');disp(' ');disp('This Matlab implementation has a few special features that make');disp('its use on large data sets particularly efficient. We will in turn');disp('demonstrate a few of theses features on small artifial data sets.');disp(' ');disp('Press any key to plot the data set');pausef1 = figure;plotdata(X, Y, x1ran, x2ran);title('Data from class +1 (squares) and class -1 (crosses)');fprintf('\n\n\n\n');fprintf('The data is plotted in figure %i, where\n', f1);disp(' squares stand for points with label Yi = +1');disp(' crosses stand for points with label Yi = -1');disp(' ')disp('Now we train a Support Vector Machine classifier on this data set,');disp('we use the simple linear kernel.');disp('Training the SVM involves solving a quadratic programming (QP)');disp('problem that has as many variables as we have training points.');disp('This may result in huge time and memory consumption during');disp('training.');disp('This SVM toolbox uses a special decomposition algorithm proposed');disp('by Osuna, Freund and Girosi');disp('(ftp://ftp.ai.mit.edu/pub/cbcl/nnsp97-svm.ps)');disp('The QP problem is decomposed into smaller ones, the size of these');disp('small QP problems is controlled by the parameter net.qpsize');disp(' ');disp('We demonstrate the decomposition algorithm by setting net.qpsize');disp('to 6. In the SVM framework this means that we consider a set of');disp('6 examples (the ''working set'') at once and try to find the ');disp('separating hyperplane for this set of examples.');disp(' ');disp(' ');disp('Press any key to start training')pausedisp(' ');disp('************');disp(' ');net = svm(size(X, 2), 'linear', [], 100);net.qpsize = 6;net = svmtrain(net, X, Y, [], 2);disp(' ');disp('************');disp(' ');f2 = figure;plotboundary(net, x1ran, x2ran);plotdata(X, Y, x1ran, x2ran);plotsv(net, X, Y);title(['SVM with linear kernel: decision boundary (black) plus Support' ... ' Vectors (red)']);disp(' ');fprintf('The resulting decision boundary is plotted in figure %i.\n', f2);disp('The contour plotted in black separates class +1 from class -1');disp('(this is the actual decision boundary)');disp('The SVM has successfully found the set of Support Vectors without');disp('ever having to work with the whole set of examples.');disp(' ');disp('The decomposition algorithm works in such a way that the size of');disp('the small QP subproblems is independent of the number of Support');disp('Vectors. Thus complex data sets with a few thousand Support');disp('Vectors can be handled easily and efficiently by solving a series');disp('of small QP problems of size net.qpsize.');disp(' ');disp('Furthermore, a linear approximation of the objective function is');disp('used for selecting which examples to put into the working set for');disp('the next QP subproblem. This is based on the approximation');disp('proposed by Joachims, see');disp('http://www-ai.cs.uni-dortmund.de/DOKUMENTE/joachims_99a.ps.gz');disp('This approximation gives an excellent convergence behaviour.');disp(' ');disp('Usually it is not necessary to modify the default value');disp('for net.qpsize');disp(' ');disp('Press any key to continue')pausefprintf('\n\n\n\n');disp('We have just now trained a SVM with linear kernel. If the');disp('resulting classifier makes too many errors on the training');disp('set we might switch to a more powerful kernel function.');disp('We will now switch to a RBF kernel.');disp(' ');disp('Training a SVM means finding the Support Vectors - the examples');disp('that are on the boundary between the classes +1 and -1.');disp('If we change the kernel function and start the training again');disp('from scratch, we loose the previously obtained information on');disp('the Support Vectors. If a set of examples are Support Vectors');disp('when using a linear kernel, we may assume that at least a few');disp('of theses examples will again be Support Vectors when using ');disp('the RBF kernel.');disp(' ');disp('SVMTRAIN provides a way of incorporating this information since');disp('it is possible to set a start value for the coefficients alpha.');disp(' ');disp('We will now start the training again, using the RBF kernel. We');disp('will use the previously obtained alpha''s as the start values.');disp(' ');disp(' ');disp('Press any key to start training')pausedisp(' ');disp('************');disp(' ');alpha0 = net.alpha;net = svm(size(X, 2), 'rbf', [36], 100);net.qpsize = 6;net = svmtrain(net, X, Y, alpha0, 2);disp(' ');disp('************');disp(' ');f3 = figure;plotboundary(net, x1ran, x2ran);plotdata(X, Y, x1ran, x2ran);plotsv(net, X, Y);title(['SVM with RBF kernel, width 36: decision boundary (black) plus Support' ... ' Vectors (red)']);fprintf('\n\n\n\n');disp('It can be seen that the whole training is finished after fewer');disp('iterations than before. It turned out that the set of Support');disp('Vectors has indeed stayed the same when changing the kernel');disp('function.');disp(' ');disp('This features is particularly useful for testing the results of ');disp('different kernel functions on large data sets, for example');disp(' net1 = svm(nin, ''RBF'', 0.5);');disp(' net1 = svmtrain(net1, X, Y);');disp(' net2 = svm(nin, ''RBF'', 0.4);');disp(' net2 = svmtrain(net2, X, Y, net1.alpha);');disp(' net3 = svm(nin, ''RBF'', 0.3);');disp(' net3 = svmtrain(net3, X, Y, net2.alpha);');disp(' ');disp('Press any key continue');pausefprintf('\n\n\n\n');disp('Another feature that is useful for use with imbalanced data sets');disp('is to set different values for the upper bound C of the');disp('coefficients alpha. In a mechanical analogy, these coefficients');disp('can be viewed as forces ''pulling'' on the decision boundary. The');disp('larger a coefficient alpha is, the larger is the force the');disp('corresponding examples exerts on the decision surface. Thus the');disp('upper bound C for the coefficients alpha is equivalent to an');disp('upper bound for the force.');disp(' ');disp('If we now have an imbalanced data set with, say, 100 negative');disp('examples and 5 positive examples, we may allow the positive');disp('examples to exert a higher force on the decision boundary to');disp('compensate for their under-representation.');disp('We do this by setting different upper bounds C for the positive');disp('and the negative examples. Such a technique has been proposed by');disp('Veropoulos et.al. in the context of medical diagnosis, see');disp('http://lara.enm.bris.ac.uk/cig/gzipped/ijcai_ss.ps.gz');disp(' ');disp('We will now show the effect of different bounds for positive and');disp('negative examples on a simple data set. First we use an equal');disp('upper bound C for the positive and negative examples.');disp(' ');disp('Press any key to show decision boundary')pauseX = [2 7; 3 6; 6 3; 8 1; 6 4; 4 8; 9 5; 9 9; 9 4; 6 9; 7 4; 4 4; 4 6; ... 3 3];Y = [ +1; +1; -1; +1; +1; -1; -1; -1; -1; -1; -1; -1; -1; ... +1];net = svm(size(X, 2), 'rbf', [128]);net.c = 100;net = svmtrain(net, X, Y);f6 = figure;plotboundary(net, x1ran, x2ran);plotdata(X, Y, x1ran, x2ran);plotsv(net, X, Y);title(['Decision boundary from SVM with upper bound C=100 for' ... ' positive and negative examples']);fprintf('\n\n\n\n');disp('Now we use an upper bound of C=10 for the positive examples and');disp('C=100 for the negative examples.');disp(' ');disp('Press any key to show decision boundary')pausenet = svm(size(X, 2), 'rbf', [128]);net.c = [50 100];net = svmtrain(net, X, Y);f7 = figure;plotboundary(net, x1ran, x2ran);plotdata(X, Y, x1ran, x2ran);plotsv(net, X, Y);title(['Decision boundary from SVM with upper bound C=10 for' ... ' positive examples (squares) and C=100 for negatives' ... ' (crosses)']);fprintf('\n\n\n\n');disp('It can be seen clearly that the SVM now makes fewer errors on the');disp('negative examples, since errors on negative examples have a');disp('''penalty'' of C=100 associated with it, whereas errors on');disp('positive examples only have a penalty of C=10. The decision');disp('boundary has moved such that example 12 is the only one that is');disp('not correctly classified.');disp('(Recall that the actual decision boundary that separates the');disp('positive from the negative examples is plotted in black, the');disp('contour lines plotted in blue and green are the lines of');disp('distance +1 and -1 from the decision boundary. All examples that');disp('are in the margin (between the +1 and -1 lines) are seen as');disp('misclassifications.)');fprintf('\n\n\n\n');disp('Press any key to end the demo')pausedelete(f1);delete(f2);delete(f3);delete(f6);delete(f7);function plotdata(X, Y, x1ran, x2ran)% PLOTDATA - Plot 2D data set% hold on;ind = find(Y>0);plot(X(ind,1), X(ind,2), 'ks');ind = find(Y<0);plot(X(ind,1), X(ind,2), 'kx');text(X(:,1)+.2,X(:,2), int2str([1:length(Y)]'));axis([x1ran x2ran]);axis xy;function plotsv(net, X, Y)% PLOTSV - Plot Support Vectors% hold on;ind = find(Y(net.svind)>0);plot(X(net.svind(ind),1),X(net.svind(ind),2),'rs');ind = find(Y(net.svind)<0);plot(X(net.svind(ind),1),X(net.svind(ind),2),'rx');function [x11, x22, x1x2out] = plotboundary(net, x1ran, x2ran)% PLOTBOUNDARY - Plot SVM decision boundary on range X1RAN and X2RAN% hold on;nbpoints = 100;x1 = x1ran(1):(x1ran(2)-x1ran(1))/nbpoints:x1ran(2);x2 = x2ran(1):(x2ran(2)-x2ran(1))/nbpoints:x2ran(2);[x11, x22] = meshgrid(x1, x2);[dummy, x1x2out] = svmfwd(net, [x11(:),x22(:)]);x1x2out = reshape(x1x2out, [length(x1) length(x2)]);contour(x11, x22, x1x2out, [-0.99 -0.99], 'b-');contour(x11, x22, x1x2out, [0 0], 'k-');contour(x11, x22, x1x2out, [0.99 0.99], 'g-');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -