📄 softfloat.java
字号:
aSign = a>>>31; shiftCount = aExp - 0x96; if ( 0 <= shiftCount ) { if ( 0x9E <= aExp ) { if ( a != 0xCF000000 ) {// float_raise( float_flag_invalid ); // if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { if ( aSign==0 || ( ( aExp == 0xFF ) && aSig!=0 ) ) { return 0x7FFFFFFF; } } return 0x80000000; } z = ( aSig | 0x00800000 )<<shiftCount; if ( aSign!=0 ) z = - z; } else { if ( aExp < 0x7E ) { aSigExtra = aExp | aSig; z = 0; } else { aSig |= 0x00800000; aSigExtra = aSig<<( shiftCount & 31 ); z = aSig>>>( -shiftCount ); } // if ( aSigExtra ) float_exception_flags |= float_flag_inexact; // roundingMode = float_rounding_mode; // if ( roundingMode == float_round_nearest_even ) { if ( aSigExtra < 0 ) { ++z; // if ( (bits32) ( aSigExtra<<1 ) == 0 ) z &= ~1; if ( ( aSigExtra<<1 ) == 0 ) z &= ~1; } if ( aSign!=0 ) z = - z;// }// else {// aSigExtra = ( aSigExtra != 0 );// if ( aSign ) {// z += ( roundingMode == float_round_down ) & aSigExtra;// z = - z;// }// else {// z += ( roundingMode == float_round_up ) & aSigExtra;// }// } } return z;}*//*----------------------------------------------------------------------------| Returns the result of converting the single-precision floating-point value| `a' to the 32-bit two's complement integer format. The conversion is| performed according to the IEC/IEEE Standard for Binary Floating-Point| Arithmetic, except that the conversion is always rounded toward zero.| If `a' is a NaN, the largest positive integer is returned. Otherwise, if| the conversion overflows, the largest integer with the same sign as `a' is| returned.*----------------------------------------------------------------------------*/// int32 float32_to_int32_round_to_zero( float32 a )public static int float32_to_int32_round_to_zero(int a){ // flag aSign; // int16 aExp, shiftCount; // bits32 aSig; // int32 z; int aSign; int aExp, shiftCount; int aSig; int z; // aSig = extractFloat32Frac( a ); // aExp = extractFloat32Exp( a ); // aSign = extractFloat32Sign( a ); aSig = a & 0x007FFFFF; aExp = ( a>>>23 ) & 0xFF; aSign = a>>>31; shiftCount = aExp - 0x9E; if ( 0 <= shiftCount ) { if ( a != 0xCF000000 ) { // float_raise( float_flag_invalid ); // if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; if (((aExp == 0xFF) && aSig!=0)) { // NaN // NaN hase to return 0 in Java! // That is different form IEEE 754 return 0; } else if (aSign==0) { // +INF return 0x7FFFFFFF; } } return 0x80000000; } else if ( aExp <= 0x7E ) { // if ( aExp | aSig ) float_exception_flags |= float_flag_inexact; return 0; } aSig = ( aSig | 0x00800000 )<<8; z = aSig>>>( -shiftCount );/* if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) { float_exception_flags |= float_flag_inexact; }*/ if (aSign!=0) z = - z; return z;}///*----------------------------------------------------------------------------//| Rounds the single-precision floating-point value `a' to an integer,//| and returns the result as a single-precision floating-point value. The//| operation is performed according to the IEC/IEEE Standard for Binary//| Floating-Point Arithmetic.//*----------------------------------------------------------------------------*/////float32 float32_round_to_int( float32 a )//{// flag aSign;// int16 aExp;// bits32 lastBitMask, roundBitsMask;// int8 roundingMode;// float32 z;//// aExp = extractFloat32Exp( a );// if ( 0x96 <= aExp ) {// if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {// return propagateFloat32NaN( a, a );// }// return a;// }// if ( aExp <= 0x7E ) {// if ( (bits32) ( a<<1 ) == 0 ) return a;// float_exception_flags |= float_flag_inexact;// aSign = extractFloat32Sign( a );// switch ( float_rounding_mode ) {// case float_round_nearest_even:// if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {// return packFloat32( aSign, 0x7F, 0 );// }// break;// case float_round_down:// return aSign ? 0xBF800000 : 0;// case float_round_up:// return aSign ? 0x80000000 : 0x3F800000;// }// return packFloat32( aSign, 0, 0 );// }// lastBitMask = 1;// lastBitMask <<= 0x96 - aExp;// roundBitsMask = lastBitMask - 1;// z = a;// roundingMode = float_rounding_mode;// if ( roundingMode == float_round_nearest_even ) {// z += lastBitMask>>1;// if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;// }// else if ( roundingMode != float_round_to_zero ) {// if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {// z += roundBitsMask;// }// }// z &= ~ roundBitsMask;// if ( z != a ) float_exception_flags |= float_flag_inexact;// return z;////}///*----------------------------------------------------------------------------| Returns the result of adding the absolute values of the single-precision| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated| before being returned. `zSign' is ignored if the result is a NaN.| The addition is performed according to the IEC/IEEE Standard for Binary| Floating-Point Arithmetic.*----------------------------------------------------------------------------*/// static float32 addFloat32Sigs( float32 a, float32 b, flag zSign )static int addFloat32Sigs( int a, int b, int zSign ){ // int16 aExp, bExp, zExp; // bits32 aSig, bSig, zSig; // int16 expDiff; int aExp, bExp, zExp; int aSig, bSig, zSig; int expDiff; // aSig = extractFloat32Frac( a ); // aExp = extractFloat32Exp( a ); // bSig = extractFloat32Frac( b ); // bExp = extractFloat32Exp( b ); aSig = a & 0x007FFFFF; aExp = ( a>>>23 ) & 0xFF; bSig = b & 0x007FFFFF; bExp = ( b>>>23 ) & 0xFF; expDiff = aExp - bExp; aSig <<= 6; bSig <<= 6; if ( 0 < expDiff ) { if ( aExp == 0xFF ) { // if ( aSig!=0 ) return propagateFloat32NaN( a, b ); if ( aSig!=0 ) return 0x7fc00000; return a; } if ( bExp == 0 ) { --expDiff; } else { bSig |= 0x20000000; } bSig = shift32RightJamming(bSig, expDiff); zExp = aExp; } else if ( expDiff < 0 ) { if ( bExp == 0xFF ) { // if ( bSig!=0 ) return propagateFloat32NaN( a, b ); if ( bSig!=0 ) return 0x7fc00000; // return packFloat32( zSign, 0xFF, 0 ); return (((zSign)<<31) + ((0xff)<<23)); } if ( aExp == 0 ) { ++expDiff; } else { aSig |= 0x20000000; } aSig = shift32RightJamming( aSig, -expDiff); zExp = bExp; } else { if ( aExp == 0xFF ) { // if ( (aSig | bSig)!=0 ) return propagateFloat32NaN( a, b ); if ( (aSig | bSig)!=0 ) return 0x7fc00000; return a; } // if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>>6 ); if ( aExp == 0 ) return (((zSign)<<31) + ((aSig+bSig)>>>6)); zSig = 0x40000000 + aSig + bSig; zExp = aExp; return roundAndPackFloat32( zSign, zExp, zSig ); } aSig |= 0x20000000; zSig = ( aSig + bSig )<<1; --zExp; if ( zSig < 0 ) { zSig = aSig + bSig; ++zExp; } return roundAndPackFloat32( zSign, zExp, zSig );}/*----------------------------------------------------------------------------| Returns the result of subtracting the absolute values of the single-| precision floating-point values `a' and `b'. If `zSign' is 1, the| difference is negated before being returned. `zSign' is ignored if the| result is a NaN. The subtraction is performed according to the IEC/IEEE| Standard for Binary Floating-Point Arithmetic.*----------------------------------------------------------------------------*/// static float32 subFloat32Sigs( float32 a, float32 b, flag zSign )static int subFloat32Sigs( int a, int b, int zSign ){ // int16 aExp, bExp, zExp; // bits32 aSig, bSig, zSig; // int16 expDiff; int aExp, bExp, zExp; int aSig, bSig, zSig; int expDiff; // aSig = extractFloat32Frac( a ); // aExp = extractFloat32Exp( a ); // bSig = extractFloat32Frac( b ); // bExp = extractFloat32Exp( b ); aSig = a & 0x007FFFFF; aExp = ( a>>>23 ) & 0xFF; bSig = b & 0x007FFFFF; bExp = ( b>>>23 ) & 0xFF; expDiff = aExp - bExp; aSig <<= 7; bSig <<= 7; if ( 0 < expDiff ) { if ( aExp == 0xFF ) { // if ( aSig!=0 ) return propagateFloat32NaN( a, b ); if ( aSig!=0 ) return 0x7fc00000; return a; } if ( bExp == 0 ) { --expDiff; } else { bSig |= 0x40000000; } bSig = shift32RightJamming(bSig, expDiff); aSig |= 0x40000000; zSig = aSig - bSig; zExp = aExp; --zExp; return normalizeRoundAndPackFloat32( zSign, zExp, zSig ); } else if ( expDiff < 0 ) { if ( bExp == 0xFF ) { // if ( bSig!=0 ) return propagateFloat32NaN( a, b ); if ( bSig!=0 ) return 0x7fc00000; // return packFloat32( zSign ^ 1, 0xFF, 0 ); return (((zSign^1)<<31) + ((0xff)<<23)); } if ( aExp == 0 ) { ++expDiff; } else { aSig |= 0x40000000; } aSig = shift32RightJamming( aSig, -expDiff); bSig |= 0x40000000; zSig = bSig - aSig; zExp = bExp; zSign ^= 1; --zExp; return normalizeRoundAndPackFloat32( zSign, zExp, zSig ); } if ( aExp == 0xFF ) { // if ( aSig!=0 || bSig!=0 ) return propagateFloat32NaN( a, b ); if ( aSig!=0 || bSig!=0 ) return 0x7fc00000; // float_raise( float_flag_invalid ); // return float32_default_nan; // return 0x7FFFFFFF;return 0x7fc00000; } if ( aExp == 0 ) { aExp = 1; bExp = 1; } if ( bSig < aSig ) { zSig = aSig - bSig; zExp = aExp; --zExp; return normalizeRoundAndPackFloat32( zSign, zExp, zSig ); } if ( aSig < bSig ) { zSig = bSig - aSig; zExp = bExp; zSign ^= 1; --zExp; return normalizeRoundAndPackFloat32( zSign, zExp, zSig ); } // return packFloat32( 0, 0, 0 ); return 0;}/*----------------------------------------------------------------------------| Returns the result of adding the single-precision floating-point values `a'| and `b'. The operation is performed according to the IEC/IEEE Standard for| Binary Floating-Point Arithmetic.*----------------------------------------------------------------------------*/public static int float32_add( int a, int b ){ int aSign, bSign; // aSign = extractFloat32Sign( a ); // bSign = extractFloat32Sign( b ); aSign = a>>>31; bSign = b>>>31; if ( aSign == bSign ) { return addFloat32Sigs( a, b, aSign ); } else { return subFloat32Sigs( a, b, aSign ); }}/*----------------------------------------------------------------------------| Returns the result of subtracting the single-precision floating-point values| `a' and `b'. The operation is performed according to the IEC/IEEE Standard| for Binary Floating-Point Arithmetic.*----------------------------------------------------------------------------*/public static int float32_sub( int a, int b ){ int aSign, bSign; // aSign = extractFloat32Sign( a ); // bSign = extractFloat32Sign( b ); aSign = a>>>31; bSign = b>>>31; if ( aSign == bSign ) { return subFloat32Sigs( a, b, aSign ); } else { return addFloat32Sigs( a, b, aSign ); }}///*----------------------------------------------------------------------------//| Returns the result of multiplying the single-precision floating-point values//| `a' and `b'. The operation is performed according to the IEC/IEEE Standard//| for Binary Floating-Point Arithmetic.//*----------------------------------------------------------------------------*/////float32 float32_mul( float32 a, float32 b )//{// flag aSign, bSign, zSign;// int16 aExp, bExp, zExp;// bits32 aSig, bSig, zSig0, zSig1;//// aSig = extractFloat32Frac( a );// aExp = extractFloat32Exp( a );// aSign = extractFloat32Sign( a );// bSig = extractFloat32Frac( b );// bExp = extractFloat32Exp( b );// bSign = extractFloat32Sign( b );// zSign = aSign ^ bSign;// if ( aExp == 0xFF ) {// if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {// return propagateFloat32NaN( a, b );// }// if ( ( bExp | bSig ) == 0 ) {// float_raise( float_flag_invalid );// return float32_default_nan;// }// return packFloat32( zSign, 0xFF, 0 );// }// if ( bExp == 0xFF ) {// if ( bSig ) return propagateFloat32NaN( a, b );// if ( ( aExp | aSig ) == 0 ) {// float_raise( float_flag_invalid );// return float32_default_nan;// }// return packFloat32( zSign, 0xFF, 0 );// }// if ( aExp == 0 ) {// if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );// normalizeFloat32Subnormal( aSig, &aExp, &aSig );
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -