⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 squareroot.java

📁 Java Op Processor java vhdl processor
💻 JAVA
字号:
package diverse;/* * Integer Square Root function * Contributors include Arne Steinarson for the basic approximation idea, Dann  * Corbit and Mathew Hendry for the first cut at the algorithm, Lawrence Kirby  * for the rearrangement, improvments and range optimization, Paul Hsieh  * for the round-then-adjust idea, and Tim Tyler, for the Java port. *//** * A faster replacement for (int)(java.lang.Math.sqrt(x)).  Completely accurate for x < 2147483648 (i.e. 2^31)... */   public class SquareRoot {      final static int[] table = {         0,    16,  22,  27,  32,  35,  39,  42,  45,  48,  50,  53,  55,  57,         59,   61,  64,  65,  67,  69,  71,  73,  75,  76,  78,  80,  81,  83,         84,   86,  87,  89,  90,  91,  93,  94,  96,  97,  98,  99, 101, 102,         103, 104, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118,         119, 120, 121, 122, 123, 124, 125, 126, 128, 128, 129, 130, 131, 132,         133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 144, 145,         146, 147, 148, 149, 150, 150, 151, 152, 153, 154, 155, 155, 156, 157,         158, 159, 160, 160, 161, 162, 163, 163, 164, 165, 166, 167, 167, 168,         169, 170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178, 178,         179, 180, 181, 181, 182, 183, 183, 184, 185, 185, 186, 187, 187, 188,         189, 189, 190, 191, 192, 192, 193, 193, 194, 195, 195, 196, 197, 197,         198, 199, 199, 200, 201, 201, 202, 203, 203, 204, 204, 205, 206, 206,         207, 208, 208, 209, 209, 210, 211, 211, 212, 212, 213, 214, 214, 215,         215, 216, 217, 217, 218, 218, 219, 219, 220, 221, 221, 222, 222, 223,         224, 224, 225, 225, 226, 226, 227, 227, 228, 229, 229, 230, 230, 231,         231, 232, 232, 233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238,         239, 240, 240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246,         246, 247, 247, 248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253,         253, 254, 254, 255      };         static int sqrt(int x) {         int xn;               if (x >= 0x10000) {            if (x >= 0x1000000) {               if (x >= 0x10000000) {                  if (x >= 0x40000000) {                     if (x >= 65535*65535) {                        return 65535;                     }                                       xn = table[x >> 24] << 8;                  }                   else                  {                     xn = table[x >> 22] << 7;                  }               }               else {                  if (x >= 0x4000000) {                     xn = table[x >> 20] << 6;                  }                  else                  {                     xn = table[x >> 18] << 5;                  }               }                           xn = (xn + 1 + (x / xn)) >> 1;               xn = (xn + 1 + (x / xn)) >> 1;               return ((xn * xn) > x) ? --xn : xn;            }            else            {               if (x >= 0x100000) {                  if (x >= 0x400000) {                     xn = table[x >> 16] << 4;                  }                  else                  {                     xn = table[x >> 14] << 3;                  }               }               else               {                  if (x >= 0x40000) {                     xn = table[x >> 12] << 2;                  }                  else                  {                     xn = table[x >> 10] << 1;                  }               }                           xn = (xn + 1 + (x / xn)) >> 1;                           return ((xn * xn) > x) ? --xn : xn;            }                     // return xn; // not the original spot for this line...         }         else         {            if (x >= 0x100) {               if (x >= 0x1000) {                  if (x >= 0x4000) {                     xn = (table[x >> 8]     ) + 1;                  }                  else                  {                     xn = (table[x >> 6] >> 1) + 1;                  }               }               else               {                  if (x >= 0x400) {                     xn = (table[x >> 4] >> 2) + 1;                  }                  else                  {                     xn = (table[x >> 2] >> 3) + 1;                  }               }                           return ((xn * xn) > x) ? --xn : xn;            }             else            {               if (x >= 0) {                  return table[x] >> 4;               }               else               {                  return -1; // negative argument...               }            }         }      }         /*    * Fast Integer Square Root function...    * Contributors include Tim Tyler, for the Java version...    */      /**    * A *much* faster replacement for (int)(java.lang.Math.sqrt(x)).  Completely accurate for x < 289...    */      static int fast_sqrt(int x) {         if (x >= 0x10000)            if (x >= 0x1000000)               if (x >= 0x10000000)                  if (x >= 0x40000000)                     return (table[x >> 24] << 8);                  else                     return (table[x >> 22] << 7);               else if (x >= 0x4000000)                  return (table[x >> 20] << 6);               else                  return (table[x >> 18] << 5);            else if (x >= 0x100000)               if (x >= 0x400000)                  return (table[x >> 16] << 4);               else                  return (table[x >> 14] << 3);            else if (x >= 0x40000)               return (table[x >> 12] << 2);            else               return (table[x >> 10] << 1);         else if (x >= 0x100)            if (x >= 0x1000)               if (x >= 0x4000)                  return (table[x >> 8]);               else                  return (table[x >> 6] >> 1);            else if (x >= 0x400)               return (table[x >> 4] >> 2);            else               return (table[x >> 2] >> 3);         else            if (x >=0)               return table[x] >> 4;         return -1; // negative argument...      }      /**    * Mark Borgerding's algorithm...    * Not terribly speedy...    */      /*      static int mborg_sqrt(int val) {         int guess=0;         int bit = 1 << 15;         do {            guess ^= bit;              // check to see if we can set this bit without going over sqrt(val)...            if (guess * guess > val )               guess ^= bit;  // it was too much, unset the bit...         } while ((bit >>= 1) != 0);               return guess;      }   	*/         /**     * Taken from http://www.jjj.de/isqrt.cc    * Code not tested well...    * Attributed to: http://www.tu-chemnitz.de/~arndt/joerg.html / email: arndt@physik.tu-chemnitz.de    * Slow.    */      /*      final static int BITS = 32;      final static int NN = 0;  // range: 0...BITSPERLONG/2         final static int test_sqrt(int x) {         int i;         int a = 0;                   // accumulator...         int e = 0;                   // trial product...         int r;               r=0;                         // remainder...               for (i=0; i < (BITS/2) + NN; i++)         {            r <<= 2;            r +=  (x >> (BITS - 2));            x <<= 2;                     a <<= 1;            e = (a << 1)+1;                     if(r >= e)            {               r -= e;               a++;            }         }               return a;      }   */         /*   // Totally hopeless performance...      static int test_sqrt(int n) {         float r = 2.0F;         float s = 0.0F;         for(; r < (float)n / r; r *= 2.0F);         for(s = (r + (float)n / r) / 2.0F; r - s > 1.0F; s = (r + (float)n / r) / 2.0F) {            r = s;         }               return (int)s;      }   	*/      }     

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -