⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lmbc_core.c

📁 levenberg marquit算法的.C源码
💻 C
📖 第 1 页 / 共 3 页
字号:
/////////////////////////////////////////////////////////////////////////////////// //  Levenberg - Marquardt non-linear minimization algorithm//  Copyright (C) 2004-05  Manolis Lourakis (lourakis@ics.forth.gr)//  Institute of Computer Science, Foundation for Research & Technology - Hellas//  Heraklion, Crete, Greece.////  This program is free software; you can redistribute it and/or modify//  it under the terms of the GNU General Public License as published by//  the Free Software Foundation; either version 2 of the License, or//  (at your option) any later version.////  This program is distributed in the hope that it will be useful,//  but WITHOUT ANY WARRANTY; without even the implied warranty of//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the//  GNU General Public License for more details.///////////////////////////////////////////////////////////////////////////////////#ifndef LM_REAL // not included by lmbc.c#error This file should not be compiled directly!#endif/* precision-specific definitions */#define FUNC_STATE LM_ADD_PREFIX(func_state)#define LNSRCH LM_ADD_PREFIX(lnsrch)#define BOXPROJECT LM_ADD_PREFIX(boxProject)#define BOXCHECK LM_ADD_PREFIX(boxCHECK)#define LEVMAR_BC_DER LM_ADD_PREFIX(levmar_bc_der)#define LEVMAR_BC_DIF LM_ADD_PREFIX(levmar_bc_dif) //CHECKME#define FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(fdif_forw_jac_approx)#define FDIF_CENT_JAC_APPROX LM_ADD_PREFIX(fdif_cent_jac_approx)#define TRANS_MAT_MAT_MULT LM_ADD_PREFIX(trans_mat_mat_mult)#define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar)#define LMBC_DIF_DATA LM_ADD_PREFIX(lmbc_dif_data)#define LMBC_DIF_FUNC LM_ADD_PREFIX(lmbc_dif_func)#define LMBC_DIF_JACF LM_ADD_PREFIX(lmbc_dif_jacf)#ifdef HAVE_LAPACK#define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU)#define AX_EQ_B_CHOL LM_ADD_PREFIX(Ax_eq_b_Chol)#define AX_EQ_B_QR LM_ADD_PREFIX(Ax_eq_b_QR)#define AX_EQ_B_QRLS LM_ADD_PREFIX(Ax_eq_b_QRLS)#define AX_EQ_B_SVD LM_ADD_PREFIX(Ax_eq_b_SVD)#else#define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU_noLapack)#endif /* HAVE_LAPACK *//* find the median of 3 numbers */#define __MEDIAN3(a, b, c) ( ((a) >= (b))?\        ( ((c) >= (a))? (a) : ( ((c) <= (b))? (b) : (c) ) ) : \        ( ((c) >= (b))? (b) : ( ((c) <= (a))? (a) : (c) ) ) )#define _POW_ CNST(2.1)struct FUNC_STATE{  int n, *nfev;  LM_REAL *hx, *x;  void *adata;};static voidLNSRCH(int m, LM_REAL *x, LM_REAL f, LM_REAL *g, LM_REAL *p, LM_REAL alpha, LM_REAL *xpls,       LM_REAL *ffpls, void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), struct FUNC_STATE state,       int *mxtake, int *iretcd, LM_REAL stepmx, LM_REAL steptl, LM_REAL *sx){/* Find a next newton iterate by backtracking line search. * Specifically, finds a \lambda such that for a fixed alpha<0.5 (usually 1e-4), * f(x + \lambda*p) <= f(x) + alpha * \lambda * g^T*p * * Translated (with minor changes) from Schnabel, Koontz & Weiss uncmin.f,  v1.3 * PARAMETERS : *	m       --> dimension of problem (i.e. number of variables) *	x(m)    --> old iterate:	x[k-1] *	f       --> function value at old iterate, f(x) *	g(m)    --> gradient at old iterate, g(x), or approximate *	p(m)    --> non-zero newton step *	alpha   --> fixed constant < 0.5 for line search (see above) *	xpls(m) <--	 new iterate x[k] *	ffpls   <--	 function value at new iterate, f(xpls) *	func    --> name of subroutine to evaluate function *	state   <--> information other than x and m that func requires. *			    state is not modified in xlnsrch (but can be modified by func). *	iretcd  <--	 return code *	mxtake  <--	 boolean flag indicating step of maximum length used *	stepmx  --> maximum allowable step size *	steptl  --> relative step size at which successive iterates *			    considered close enough to terminate algorithm *	sx(m)	  --> diagonal scaling matrix for x, can be NULL *	internal variables *	sln		 newton length *	rln		 relative length of newton step*/    register int i;    int firstback = 1;    LM_REAL disc;    LM_REAL a3, b;    LM_REAL t1, t2, t3, lambda, tlmbda, rmnlmb;    LM_REAL scl, rln, sln, slp;    LM_REAL tmp1, tmp2;    LM_REAL fpls, pfpls = 0., plmbda = 0.; /* -Wall */    f*=CNST(0.5);    *mxtake = 0;    *iretcd = 2;    tmp1 = 0.;    if(!sx) /* no scaling */      for (i = 0; i < m; ++i)        tmp1 += p[i] * p[i];    else      for (i = 0; i < m; ++i)        tmp1 += sx[i] * sx[i] * p[i] * p[i];    sln = (LM_REAL)sqrt(tmp1);    if (sln > stepmx) {	  /*	newton step longer than maximum allowed */	    scl = stepmx / sln;      for(i=0; i<m; ++i) /* p * scl */        p[i]*=scl;	    sln = stepmx;    }    for(i=0, slp=0.; i<m; ++i) /* g^T * p */      slp+=g[i]*p[i];    rln = 0.;    if(!sx) /* no scaling */      for (i = 0; i < m; ++i) {	      tmp1 = (FABS(x[i])>=CNST(1.))? FABS(x[i]) : CNST(1.);	      tmp2 = FABS(p[i])/tmp1;	      if(rln < tmp2) rln = tmp2;      }    else      for (i = 0; i < m; ++i) {	      tmp1 = (FABS(x[i])>=CNST(1.)/sx[i])? FABS(x[i]) : CNST(1.)/sx[i];	      tmp2 = FABS(p[i])/tmp1;	      if(rln < tmp2) rln = tmp2;      }    rmnlmb = steptl / rln;    lambda = CNST(1.0);    /*	check if new iterate satisfactory.  generate new lambda if necessary. */    while(*iretcd > 1) {	    for (i = 0; i < m; ++i)	      xpls[i] = x[i] + lambda * p[i];      /* evaluate function at new point */      (*func)(xpls, state.hx, m, state.n, state.adata);      for(i=0, tmp1=0.0; i<state.n; ++i){        state.hx[i]=tmp2=state.x[i]-state.hx[i];        tmp1+=tmp2*tmp2;      }      fpls=CNST(0.5)*tmp1; *ffpls=tmp1; ++(*(state.nfev));	    if (fpls <= f + slp * alpha * lambda) { /* solution found */	      *iretcd = 0;	      if (lambda == CNST(1.) && sln > stepmx * CNST(.99)) *mxtake = 1;	      return;	    }	    /* else : solution not (yet) found */      /* First find a point with a finite value */	    if (lambda < rmnlmb) {	      /* no satisfactory xpls found sufficiently distinct from x */	      *iretcd = 1;	      return;	    }	    else { /*	calculate new lambda */	      /* modifications to cover non-finite values */	      if (fpls >= LM_REAL_MAX) {		      lambda *= CNST(0.1);		      firstback = 1;	      }	      else {		      if (firstback) { /*	first backtrack: quadratic fit */		        tlmbda = -lambda * slp / ((fpls - f - slp) * CNST(2.));		        firstback = 0;		      }		      else { /*	all subsequent backtracks: cubic fit */		        t1 = fpls - f - lambda * slp;		        t2 = pfpls - f - plmbda * slp;		        t3 = CNST(1.) / (lambda - plmbda);		        a3 = CNST(3.) * t3 * (t1 / (lambda * lambda)				      - t2 / (plmbda * plmbda));		        b = t3 * (t2 * lambda / (plmbda * plmbda)			          - t1 * plmbda / (lambda * lambda));		        disc = b * b - a3 * slp;		        if (disc > b * b)			    /* only one positive critical point, must be minimum */			        tlmbda = (-b + ((a3 < 0)? -(LM_REAL)sqrt(disc): (LM_REAL)sqrt(disc))) /a3;		        else			    /* both critical points positive, first is minimum */			        tlmbda = (-b + ((a3 < 0)? (LM_REAL)sqrt(disc): -(LM_REAL)sqrt(disc))) /a3;		        if (tlmbda > lambda * CNST(.5))			        tlmbda = lambda * CNST(.5);		    }		    plmbda = lambda;		    pfpls = fpls;		    if (tlmbda < lambda * CNST(.1))		      lambda *= CNST(.1);		    else		      lambda = tlmbda;      }	  }  }} /* LNSRCH *//* Projections to feasible set \Omega: P_{\Omega}(y) := arg min { ||x - y|| : x \in \Omega},  y \in R^m *//* project vector p to a box shaped feasible set. p is a mx1 vector. * Either lb, ub can be NULL. If not NULL, they are mx1 vectors */static void BOXPROJECT(LM_REAL *p, LM_REAL *lb, LM_REAL *ub, int m){register int i;  if(!lb){ /* no lower bounds */    if(!ub) /* no upper bounds */      return;    else{ /* upper bounds only */      for(i=0; i<m; ++i)        if(p[i]>ub[i]) p[i]=ub[i];    }  }  else    if(!ub){ /* lower bounds only */      for(i=0; i<m; ++i)        if(p[i]<lb[i]) p[i]=lb[i];    }    else /* box bounds */      for(i=0; i<m; ++i)        p[i]=__MEDIAN3(lb[i], p[i], ub[i]);}/* check box constraints for consistency */static int BOXCHECK(LM_REAL *lb, LM_REAL *ub, int m){register int i;  if(!lb || !ub) return 1;  for(i=0; i<m; ++i)    if(lb[i]>ub[i]) return 0;  return 1;}/*  * This function seeks the parameter vector p that best describes the measurements * vector x under box constraints. * More precisely, given a vector function  func : R^m --> R^n with n>=m, * it finds p s.t. func(p) ~= x, i.e. the squared second order (i.e. L2) norm of * e=x-func(p) is minimized under the constraints lb[i]<=p[i]<=ub[i]. * If no lower bound constraint applies for p[i], use -DBL_MAX/-FLT_MAX for lb[i]; * If no upper bound constraint applies for p[i], use DBL_MAX/FLT_MAX for ub[i]. * * This function requires an analytic jacobian. In case the latter is unavailable, * use LEVMAR_BC_DIF() bellow * * Returns the number of iterations (>=0) if successfull, -1 if failed * * For details, see C. Kanzow, N. Yamashita and M. Fukushima: "Levenberg-Marquardt * methods for constrained nonlinear equations with strong local convergence properties", * Journal of Computational and Applied Mathematics 172, 2004, pp. 375-397. * Also, see H.B. Nielsen's (http://www.imm.dtu.dk/~hbn) IMM/DTU tutorial on * unconrstrained Levenberg-Marquardt at http://www.imm.dtu.dk/courses/02611/nllsq.pdf */int LEVMAR_BC_DER(  void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */  void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),  /* function to evaluate the jacobian \part x / \part p */   LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */  LM_REAL *x,         /* I: measurement vector */  int m,              /* I: parameter vector dimension (i.e. #unknowns) */  int n,              /* I: measurement vector dimension */  LM_REAL *lb,        /* I: vector of lower bounds. If NULL, no lower bounds apply */  LM_REAL *ub,        /* I: vector of upper bounds. If NULL, no upper bounds apply */  int itmax,          /* I: maximum number of iterations */  LM_REAL opts[4],    /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu,                       * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used.                       * Note that ||J^T e||_inf is computed on free (not equal to lb[i] or ub[i]) variables only.                       */  LM_REAL info[LM_INFO_SZ],					           /* O: information regarding the minimization. Set to NULL if don't care                      * info[0]= ||e||_2 at initial p.                      * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -